Transfer Function Synthesis
without Quantifier Elimination

Jörg Brauer and Andy King

RWTH Aachen University
Portcullis Computer Security
One instruction at a time abstraction by transfer function lookup
Transfer function synthesis with \exists_x and \forall_x [SAS’10]
Transfer function synthesis without \exists_x and \forall_x
Stage 1

Feasible mode combinations
Consider the following:

1: ADD R_0, R_1
2: MOV R_2, R_0
3: EOR R_2, R_1
4: LSL R_2
5: SBC R_2, R_2
6: ADD R_0, R_2
7: EOR R_0, R_2

Implements $R_0' := \text{isign}(R_0+R_1,R_1)$ where isign assigns $\text{abs}(R_0+R_1)$ to R_0 if $R_1 \geq 0$ and $-\text{abs}(R_0+R_1)$ otherwise.

Need to extract cases:

- Cases which are there by design: $R_1 \geq 0$
- Cases which are implementation artefacts: when abs is applied to -2^{31} then the result is 2^{31} subject to overflow which is -2^{31}
Let μ (mu) denote a Boolean encoding of ADD R0, R1 over bit-vectors $\{\vec{r}0, \vec{r}1, \ldots\}$ obtained through SSA and

$$
\begin{align*}
\mu_O &= \mu \land \neg \vec{r}0[31] \land \neg \vec{r}1[31] \land \vec{r}0'[31] \\
\mu_U &= \mu \land \vec{r}0[31] \land \vec{r}1[31] \land \neg \vec{r}0'[31] \\
\mu_E &= \mu \land (\vec{r}0[31] \lor \vec{r}1[31] \lor \neg \vec{r}0'[31]) \land (\neg \vec{r}0[31] \lor \neg \vec{r}1[31] \lor \vec{r}0'[31])
\end{align*}
$$

Let ν_O and ν_E (nu) express the overflow and exact modes of LSL R2.

In an analogous way to the first ADD, let η_O, η_U and η_E express the semantics of ADD R0, R2.
Using these encodings that satisfy a single mode, we can compose a formula for a fixed mode-combination.

The combination of μ_U, ν_E and η_E is infeasible.

The above block constitutes $3 \cdot 2 \cdot 3 = 18$ combinations of modes, but only five of which are satisfiable.

We derive a guard and update only for the feasible mode-combinations.
Synthesising guards
Consider the case where (1) underflows, (4) overflows and (6) is exact, with the corresponding formula denoted π.

To derive an octagonal guard for π, consider the problem of computing least d such that $-\langle r\vec{0} \rangle - \langle r\vec{1} \rangle \leq d$.

Let κ be a formula encodes $\langle \vec{d} \rangle = -\langle r\vec{0} \rangle - \langle r\vec{1} \rangle$ where \vec{d} is signed and κ is extended to 34 bits to prevent wraps.
Maximising $-2^{33} \leq d < 2^{33}$ bit-by-bit

- Then check:
 \[
 \psi^1 = \pi \land \kappa \land \neg \overrightarrow{d}[33]
 \]
- Satisfiability of ψ^1 shows $0 \leq d < 2^{33}$
- Then check:
 \[
 \psi^2 = \pi \land \kappa \land \neg \overrightarrow{d}[33] \land \overrightarrow{d}[32]
 \]
- Satisfiability of ψ^2 shows $2^{32} \leq d < 2^{33}$
- Then check:
 \[
 \psi^3 = \pi \land \kappa \land \neg \overrightarrow{d}[33] \land \overrightarrow{d}[32] \land \overrightarrow{d}[31]
 \]
- Unsatisfiability of ψ^3 shows $2^{32} \leq d < 2^{32} + 2^{31}$
- Continuing in this way we infer $2^{32} \leq d < 2^{32} + 1$.
Repeating this tactic for all five feasible mode-combinations:

\[g_{O(1), O(4), U(6)} = 2^{31} \leq \langle \vec{r}_0 \rangle + \langle \vec{r}_1 \rangle \leq 2^{31} \quad \land \quad 0 \leq \langle \vec{r}_1 \rangle \leq 2^{31} - 1 \]

\[g_{E(1), E(4), E(6)} = -2^{31} \leq \langle \vec{r}_0 \rangle + \langle \vec{r}_1 \rangle \leq 2^{31} - 1 \]

\[g_{U(1), O(4), E(6)} = -2^{32} \leq \langle \vec{r}_0 \rangle + \langle \vec{r}_1 \rangle \leq -2^{31} - 1 \]

\[g_{E(1), O(4), E(6)} = 0 \leq \langle \vec{r}_0 \rangle + \langle \vec{r}_1 \rangle \leq 2^{31} - 1 \quad \land \quad -2^{31} \leq \langle \vec{r}_1 \rangle \leq 1 \]

\[g_{O(1), O(4), E(6)} = 2^{31} + 1 \leq \langle \vec{r}_0 \rangle + \langle \vec{r}_1 \rangle \leq 2^{32} \]

Redundant inequalities are omitted for clarity of presentation.
Synthesising updates
Consider ADD R0 R1; LSL R0 in exact modes

We want an update to map octagonal input constraints with symbolic constants to octagonal outputs with symbolic constants:

\[
\begin{align*}
\langle \vec{r}_0 \rangle & \leq d_1 \\
\langle \vec{r}_1 \rangle & \leq d_2 \\
-\langle \vec{r}_0 \rangle & \leq d_3 \\
-\langle \vec{r}_1 \rangle & \leq d_4 \\
\langle \vec{r}_0 \rangle + \langle \vec{r}_1 \rangle & \leq d_5 \\
-\langle \vec{r}_0 \rangle - \langle \vec{r}_1 \rangle & \leq d_6 \\
-\langle \vec{r}_0 \rangle + \langle \vec{r}_1 \rangle & \leq d_7 \\
\langle \vec{r}_0 \rangle - \langle \vec{r}_1 \rangle & \leq d_8 \\
\end{align*}
\]
\[
\begin{align*}
\langle \vec{r}_0' \rangle & \leq 2d_5 \\
\langle \vec{r}_1' \rangle & \leq d_2 \\
-\langle \vec{r}_0' \rangle & \leq 2d_6 \\
-\langle \vec{r}_1' \rangle & \leq d_4 \\
\langle \vec{r}_0' \rangle + \langle \vec{r}_1' \rangle & \leq 2d_5 + d_2 \\
-\langle \vec{r}_0' \rangle - \langle \vec{r}_1' \rangle & \leq 2d_6 + d_4 \\
-\langle \vec{r}_0' \rangle + \langle \vec{r}_1' \rangle & \leq 2d_6 + d_2 \\
\langle \vec{r}_0' \rangle - \langle \vec{r}_1' \rangle & \leq 2d_5 + d_4 \\
\end{align*}
\]
Consider $\langle \vec{r} \vec{0}' \rangle \leq d'_1$ and the problem of discovering a relationship between d'_1 and d_1, \ldots, d_8

- Let $\vec{d}_1, \ldots, \vec{d}_8$ denote signed 34-bit vectors that represent the symbolic constants d_1, \ldots, d_8
- Let κ denote a formula that holds iff the 8 inequalities $\langle \vec{r} \vec{0} \rangle \leq \langle \vec{d}_1 \rangle, \ldots, \langle \vec{r} \vec{0} \rangle - \langle \vec{r} \vec{1} \rangle \leq \langle \vec{d}_8 \rangle$ simultaneously hold
- Let π denote a propositional encoding for ADD R0 R1; LSL R0 operating in exact mode
- Let ρ encode the equality $\langle \vec{r} \vec{0}' \rangle = \langle \vec{d}'_1 \rangle$ where \vec{d}'_1 is a signed bit-vector representing d'_1
Step i: solving and maximisation

- Present $\kappa \land \pi \land \rho$ to a SAT solver and find a model:

$$m_1 = \left\{ \langle \vec{d}'_1 \rangle = 1, \langle \vec{d}_1 \rangle = 1, \langle \vec{d}_2 \rangle = 1, \ldots, \langle \vec{d}_7 \rangle = 1, \langle \vec{d}_8 \rangle = 1 \right\}$$

- $\langle \vec{d}'_1 \rangle = 1$ may not be maximum for $\langle \vec{d}_1 \rangle = 1, \ldots, \langle \vec{d}_8 \rangle = 1$

- Let ζ denote a formula that holds iff $\langle \vec{d}_1 \rangle = 1, \ldots, \langle \vec{d}_8 \rangle = 1$

- Apply dichotomic search to find the maximal value of $\langle \vec{d}'_1 \rangle$ subject to $\kappa \land \pi \land \rho \land \zeta$.

- This gives the model:

$$m'_1 = \left\{ \langle \vec{d}'_1 \rangle = 2, \langle \vec{d}_1 \rangle = 1, \langle \vec{d}_2 \rangle = 1, \ldots, \langle \vec{d}_7 \rangle = 1, \langle \vec{d}_8 \rangle = 1 \right\}$$
Suppose the matrix M_1 is constructed from m_1' by using the variable ordering $\langle d_1', d_1, \ldots, d_8 \rangle$ on columns:

$$M_1 = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}$$

Let μ denote a formula that holds iff $\langle \overrightarrow{d_8} \rangle \neq 1$ holds
Step ii: solving and maximisation

- Present $\kappa \land \pi \land \rho \land \mu$ to a SAT solver and find a model:

$$m_2 = \{ \langle \vec{d}_1' \rangle = 8, \langle \vec{d}_1 \rangle = 3, \langle \vec{d}_2 \rangle = 3, \ldots, \langle \vec{d}_7 \rangle = 2, \langle \vec{d}_8 \rangle = 0 \}$$

- $\langle \vec{d}_1' \rangle = 8$ may not be maximum for $\langle \vec{d}_1 \rangle = 3, \ldots, \langle \vec{d}_8 \rangle = 0$

- Let ζ denote a formula that holds iff $\langle \vec{d}_1 \rangle = 3, \ldots, \langle \vec{d}_8 \rangle = 0$

- Apply dichotomic search to find the maximal value of $\langle \vec{d}_1' \rangle$ subject to $\kappa \land \pi \land \rho \land \zeta$.

- This gives the model:

$$m'_2 = \{ \langle \vec{d}_1' \rangle = 10, \langle \vec{d}_1 \rangle = 3, \langle \vec{d}_2 \rangle = 3, \ldots, \langle \vec{d}_7 \rangle = 2, \langle \vec{d}_8 \rangle = 0 \}$$
Merging [Karr’76]

The model m'_2 is interpreted as a matrix:

$$M_2 = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 10 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 3 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 3 \\
\vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{bmatrix}$$

The merge $M_1 \sqcup M_2$ is as follows:

$$M_1 \sqcup M_2 = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & -2 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 2 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{bmatrix}$$
Step iii and iv: solving and maximisation

- Let μ now denote a formula that holds iff $\langle\vec{d}_7\rangle + \langle\vec{d}_8\rangle \neq 1$
- Presenting $\kappa \land \pi \land \rho \land \mu$ to a solver gives:

 $$m_3 = \begin{cases}
 \langle\vec{d}_1'\rangle = 22, \langle\vec{d}_1\rangle = 8, \ldots, \langle\vec{d}_8\rangle = 0
 \end{cases}$$

- Maximising $\langle\vec{d}_1'\rangle$ then gives:

 $$m_3' = \begin{cases}
 \langle\vec{d}_1'\rangle = 26, \langle\vec{d}_1\rangle = 8, \ldots, \langle\vec{d}_8\rangle = 0
 \end{cases}$$

- Form M_3 and calculate another merge:

 $$M_1 \sqcup M_2 \sqcup M_3 = \begin{b matrix}
 1 & 0 & 0 & 0 & 0 & -2 & 0 & 0 & 0 & 0 \\
 0 & 1 & -1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 \\
 \end{b matrix}$$

- Repeating

 $$M_1 \sqcup M_2 \sqcup M_3 \sqcup M_4 = \begin{b matrix}
 1 & 0 & 0 & 0 & 0 & -2 & 0 & 0 & 0 & 0 \\
 \end{b matrix}$$

- Conclude $d_1' = 2d_5$
“With” versus “without” for intervals

<table>
<thead>
<tr>
<th>block</th>
<th>insts</th>
<th>bits</th>
<th>guards/SAT</th>
<th>affine/SAT</th>
<th>overall</th>
<th>SAS’10</th>
</tr>
</thead>
<tbody>
<tr>
<td>inc</td>
<td>1</td>
<td>8</td>
<td>0.2s / 40</td>
<td>0.1s / 5</td>
<td>0.3s</td>
<td>0.2s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>0.5s / 136</td>
<td>0.2s / 5</td>
<td>1.0s</td>
<td>23.0s</td>
</tr>
<tr>
<td>shifter</td>
<td>2</td>
<td>8</td>
<td>0.3s / 60</td>
<td>0.1s / 8</td>
<td>0.4s</td>
<td>0.3s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>0.8s / 216</td>
<td>0.2s / 8</td>
<td>1.0s</td>
<td>∞</td>
</tr>
<tr>
<td>swap</td>
<td>3</td>
<td>8</td>
<td>—</td>
<td>0.1s / 3</td>
<td>0.1s</td>
<td>0.1s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>—</td>
<td>0.1s / 3</td>
<td>0.1s</td>
<td>0.2s</td>
</tr>
<tr>
<td>flipper</td>
<td>4</td>
<td>8</td>
<td>0.2s / 40</td>
<td>0.2s / 5</td>
<td>0.4s</td>
<td>0.5s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>0.9s / 216</td>
<td>0.3s / 5</td>
<td>1.2s</td>
<td>∞</td>
</tr>
<tr>
<td>abs</td>
<td>5</td>
<td>8</td>
<td>2.5s / 216</td>
<td>0.3s / 8</td>
<td>2.8s</td>
<td>0.8s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>6.5s / 792</td>
<td>0.3s / 8</td>
<td>6.8s</td>
<td>∞</td>
</tr>
<tr>
<td>isign</td>
<td>7</td>
<td>8</td>
<td>4.1s / 360</td>
<td>0.2s / 18</td>
<td>4.3s</td>
<td>4.5s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>10.7s / 1320</td>
<td>0.4s / 18</td>
<td>11.1s</td>
<td>∞</td>
</tr>
<tr>
<td>absolute</td>
<td>10</td>
<td>8</td>
<td>2.8s / 216</td>
<td>0.3s / 8</td>
<td>3.1s</td>
<td>9.5s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>7.2s / 792</td>
<td>0.3s / 8</td>
<td>7.5s</td>
<td>∞</td>
</tr>
</tbody>
</table>