Transfer Function Synthesis without Quantifier Elimination

Jörg Brauer and Andy King

RWTH Aachen University

Portcullis Computer Security

Transfer Function Synthesis without Quantifier Elimination

One instruction at a time abstraction by transfer function lookup

Transfer function synthesis with \exists_{x} and \forall_{x} [SAS'10]

Transfer function synthesis without \exists_{x} and \forall_{x}

Stage 1

Feasible mode combinations

Transfer functions as systems of guarded updates

- Consider the following:

1:ADD R0, R1 2:MOV R2, R0 3:EOR R2, R1 4:LSL R2 5:SBC R2, R2 6:ADD R0, R2 7:EOR R0, R2

- Implements RO':= isign(R0+R1,R1) where isign assigns abs (R0+R1) to R0 if R1 ≥ 0 and -abs(R0+R1) otherwise
- Need to extract cases:
- Cases which are there by design: R1 ≥ 0
- Cases which are implementation artefacts: when abs is applied to -2^{31} then the result is 2^{31} subject to overflow which is -2^{31}

Modes of ADD R0, R1, LSL R2 and ADD R0, R2

- Let μ (mu) denote a Boolean encoding of ADD R0, R1 over bit-vectors $\{r \overrightarrow{0}, r \overrightarrow{1}, \ldots\}$ obtained through SSA and
$\mu_{O}=\mu \wedge \neg \overrightarrow{0}[31] \wedge \neg \overrightarrow{\mathrm{I}}[31] \wedge \overrightarrow{\mathrm{O}}^{\prime}[31]$
$\mu_{U}=\mu \wedge \overrightarrow{0}[31] \wedge \overrightarrow{r 1}[31] \wedge \neg \overrightarrow{0}^{\prime}[31]$
$\mu_{E}=\mu \wedge\left(\overrightarrow{0}[31] \vee \overrightarrow{\mathrm{1}}[31] \vee \neg \overrightarrow{\mathrm{O}}^{\prime}[31]\right) \wedge\left(\neg \overrightarrow{\mathrm{O}}[31] \vee \neg r \overrightarrow{1}[31] \vee \overrightarrow{\mathrm{O}}^{\prime}[31]\right)$
- Let ν_{O} and $\nu_{E}(\mathrm{nu})$ express the overflow and exact modes of LSL R2.
- In an analogous way to the first ADD, let η_{O}, η_{U} and η_{E} express the semantics of ADD R0, R2.

Composing modes for whole block

- Using these encodings that satisfy a single mode, we can compose a formula for a fixed mode-combination.
- The combination of μ_{U}, ν_{E} and η_{E} is infeasible
- The above block constitutes $3 \cdot 2 \cdot 3=18$ combinations of modes, but only five of which are satisfiable
- We derive a guard and update only for the feasible mode-combinations

Stage 2

Synthesising guards

Deriving guards with dichotomic search

- Consider the case where (1) underflows, (4) overflows and (6) is exact, with the corresponding formula denoted π
- To derive an octagonal guard for π, consider the problem of computing least d such that $-\langle\langle r \mathbf{0}\rangle\rangle-\langle\langle\vec{r}\rangle\rangle \leq d$
- Let κ be a formula encodes $\langle\langle\vec{d}\rangle\rangle=-\langle\langle r \overrightarrow{0}\rangle\rangle-\langle\langle r \overrightarrow{1}\rangle\rangle$ where \vec{d} is signed and κ is extended to 34 bits to prevent wraps

Maximising $-2^{33} \leq d<2^{33}$ bit-by-bit

- Then check:

$$
\psi^{1}=\pi \wedge \kappa \wedge \neg \vec{d}[33]
$$

- Satisfiability of ψ^{1} shows $0 \leq d<2^{33}$
- Then check:

$$
\psi^{2}=\pi \wedge \kappa \wedge \neg \vec{d}[33] \wedge \vec{d}[32]
$$

- Satisfiability of ψ^{2} shows $2^{32} \leq d<2^{33}$
- Then check:

$$
\psi^{3}=\pi \wedge \kappa \wedge \neg \vec{d}[33] \wedge \vec{d}[32] \wedge \vec{d}[31]
$$

- Unsatisfiability of ψ^{3} shows $2^{32} \leq d<2^{32}+2^{31}$
- Continuing in this way we infer $2^{32} \leq d<2^{32}+1$.

Just for the record

Repeating this tactic for all five feasible mode-combinations:

$$
\begin{aligned}
& g_{O^{(1)}, O^{(4)}, U^{(6)}}=\quad 2^{31} \leq\langle\langle r \overrightarrow{0}\rangle\rangle+\langle\langle r \overrightarrow{1}\rangle\rangle \leq 2^{31} \quad \wedge \quad 0 \leq\langle\langle r \overrightarrow{1}\rangle\rangle \leq 2^{31}-1 \\
& g_{E^{(1)}, E^{(4)}, E^{(6)}}=-2^{31} \leq\langle\langle r \overrightarrow{0}\rangle\rangle+\langle\langle r \overrightarrow{1}\rangle\rangle \leq 2^{31}-1 \\
& g_{U^{(1)}, O^{(4)}, E^{(6)}}=-\frac{-2^{32}}{} \leq\langle\langle r \overrightarrow{0}\rangle\rangle+\langle\langle r \overrightarrow{1}\rangle\rangle \leq-2^{31}-1 \\
& g_{E^{(1)}, O^{(4)}, E^{(6)}}=\quad 0 \leq\langle\langle r \overrightarrow{0}\rangle\rangle+\langle\langle r \overrightarrow{1}\rangle\rangle \leq 2^{31}-1 \quad \wedge-2^{31} \leq\langle\langle r \overrightarrow{1}\rangle\rangle \leq 1 \\
& g_{O^{(1)}, O^{(4)}, E^{(6)}}=2^{31}+1 \leq\langle\langle r \overrightarrow{0}\rangle\rangle+\langle\langle r \overrightarrow{1}\rangle\rangle \leq 2^{32}
\end{aligned}
$$

Redundant inequalities are omitted for clarity of presentation

Stage 3

Synthesising updates

Consider ADD R0 R1; LSL RO in exact modes

We want an update to map octagonal input constraints with symbolic constants to octagonal outputs with symbolic constants:

$$
\left\{\begin{array}{r}
\langle\langle r \overrightarrow{0}\rangle\rangle \leq d_{1} \\
\langle\langle r \overrightarrow{1}\rangle\rangle \leq d_{2} \\
-\langle\langle\overrightarrow{r 0}\rangle\rangle \leq d_{3} \\
-\langle\langle r \overrightarrow{1}\rangle\rangle \leq d_{4} \\
\langle\langle\vec{r}\rangle\rangle+\langle\langle\vec{r}\rangle\rangle \leq d_{5} \\
-\langle\langle\overrightarrow{0}\rangle\rangle-\langle\langle r \overrightarrow{1}\rangle\rangle \leq d_{6} \\
-\langle\langle\overrightarrow{0}\rangle\rangle+\langle\langle r \overrightarrow{1}\rangle\rangle \leq d_{7} \\
\langle\langle\overrightarrow{0}\rangle\rangle-\langle\langle r \overrightarrow{1}\rangle\rangle \leq d_{8}
\end{array}\right\} \leadsto\left\{\begin{array}{c}
\left\langle\left\langle\vec{r}^{\prime}\right\rangle\right\rangle \leq 2 d_{5} \\
\left\langle\left\langle\vec{r}^{\prime}\right\rangle\right\rangle \leq d_{2} \\
-\left\langle\left\langle\overrightarrow{0}^{\prime}\right\rangle\right\rangle \leq 2 d_{6} \\
-\left\langle\left\langle\vec{r}^{\prime}\right\rangle\right\rangle \leq d_{4} \\
\left.\left\langle\overrightarrow{r 0}^{\prime}\right\rangle\right\rangle+\left\langle\left\langle\vec{r}^{\prime}\right\rangle\right\rangle \leq 2 d_{5}+d_{2} \\
-\left\langle\left\langle\vec{r}^{\prime}\right\rangle\right\rangle-\left\langle\left\langle\vec{r}^{\prime}\right\rangle\right\rangle \leq 2 d_{6}+d_{4} \\
-\left\langle\left\langle\overrightarrow{0}^{\prime}\right\rangle\right\rangle+\left\langle\left\langle\overrightarrow{1}^{\prime}\right\rangle\right\rangle \leq 2 d_{6}+d_{2} \\
\left\langle\left\langle\vec{r}^{\prime}\right\rangle\right\rangle-\left\langle\left\langle\overrightarrow{1}^{\prime}\right\rangle\right\rangle \leq 2 d_{5}+d_{4}
\end{array}\right\}
$$

Consider $\left\langle\left\langle\overrightarrow{r 0}^{\prime}\right\rangle\right\rangle \leq d_{1}^{\prime}$ and the problem of discovering a relationship between d_{1}^{\prime} and d_{1}, \ldots, d_{8}

- Let $\vec{d}_{1}, \ldots, \vec{d}_{8}$ denote signed 34 -bit vectors that represent the symbolic constants d_{1}, \ldots, d_{8}
- Let κ denote a formula that holds iff the 8 inequalities $\langle\langle\overrightarrow{0}\rangle\rangle \leq\left\langle\left\langle\vec{d}_{1}\right\rangle\right\rangle, \ldots,\langle\langle\vec{r}\rangle\rangle-\langle\langle\vec{r}\rangle\rangle \leq\left\langle\left\langle\vec{d}_{8}\right\rangle\right\rangle$ simultaneously hold
- Let π denote a propositional encoding for ADD R0 R1; LSL R0 operating in exact mode
- Let ρ encode the equality $\left\langle\left\langle\overrightarrow{r 0}^{\prime}\right\rangle\right\rangle=\left\langle\left\langle\overrightarrow{d_{1}^{\prime}}\right\rangle\right\rangle$ where $\overrightarrow{d_{1}^{\prime}}$ is a signed bit-vector representing d_{1}^{\prime}

Step i: solving and maximisation

- Present $\kappa \wedge \pi \wedge \rho$ to a SAT solver and find a model:

$$
m_{1}=\left\{\left\langle\left\langle\vec{d}_{1}^{\prime}\right\rangle\right\rangle=1,\left\langle\left\langle\vec{d}_{1}\right\rangle\right\rangle=1,\left\langle\left\langle\vec{d}_{2}\right\rangle\right\rangle=1, \ldots,\left\langle\left\langle\vec{d}_{7}\right\rangle\right\rangle=1,\left\langle\left\langle\vec{d}_{8}\right\rangle\right\rangle=1\right\}
$$

- $\left\langle\left\langle\vec{d}_{1}^{\prime}\right\rangle\right\rangle=1$ may not be maximum for $\left\langle\left\langle\vec{d}_{1}\right\rangle\right\rangle=1, \ldots,\left\langle\left\langle\vec{d}_{8}\right\rangle\right\rangle=1$
- Let ζ denote a formula that holds iff $\left\langle\left\langle\vec{d}_{1}\right\rangle\right\rangle=1, \ldots,\left\langle\left\langle\vec{d}_{8}\right\rangle\right\rangle=1$
- Apply dichotomic search to find the maximal value of $\left\langle\left\langle\overrightarrow{d_{1}^{\prime}}\right\rangle\right\rangle$ subject to $\kappa \wedge \pi \wedge \rho \wedge \zeta$.
- This gives the model:

$$
m_{1}^{\prime}=\left\{\left\langle\left\langle\vec{d}_{1}^{\prime}\right\rangle\right\rangle=2,\left\langle\left\langle\vec{d}_{1}\right\rangle\right\rangle=1,\left\langle\left\langle\vec{d}_{2}\right\rangle\right\rangle=1, \ldots,\left\langle\left\langle\vec{d}_{7}\right\rangle\right\rangle=1,\left\langle\left\langle\vec{d}_{8}\right\rangle\right\rangle=1\right\}
$$

Triangularisation and resolving

- Suppose the matrix \mathbf{M}_{1} is constructed from m_{1}^{\prime} by using the variable ordering $\left\langle d_{1}^{\prime}, d_{1}, \ldots, d_{8}\right\rangle$ on columns:

$$
\mathbf{M}_{1}=\left[\begin{array}{lllllllll|l}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

- Let μ denote a formula that holds iff $\left\langle\left\langle\vec{d}_{8}\right\rangle\right\rangle \neq 1$ holds

Step ii: solving and maximisation

- Present $\kappa \wedge \pi \wedge \rho \wedge \mu$ to a SAT solver and find a model:

$$
m_{2}=\left\{\left\langle\left\langle\vec{d}_{1}^{\prime}\right\rangle\right\rangle=8,\left\langle\left\langle\vec{d}_{1}\right\rangle\right\rangle=3,\left\langle\left\langle\vec{d}_{2}\right\rangle\right\rangle=3, \ldots,\left\langle\left\langle\vec{d}_{7}\right\rangle\right\rangle=2,\left\langle\left\langle\vec{d}_{8}\right\rangle\right\rangle=0\right\}
$$

- $\left\langle\left\langle\vec{d}_{1}^{\prime}\right\rangle\right\rangle=8$ may not be maximum for $\left\langle\left\langle\vec{d}_{1}\right\rangle\right\rangle=3, \ldots,\left\langle\left\langle\vec{d}_{8}\right\rangle\right\rangle=0$
- Let ζ denote a formula that holds iff $\left\langle\left\langle\vec{d}_{1}\right\rangle\right\rangle=3, \ldots,\left\langle\left\langle\vec{d}_{8}\right\rangle\right\rangle=0$
- Apply dichotomic search to find the maximal value of $\left\langle\left\langle\overrightarrow{d_{1}^{\prime}}\right\rangle\right\rangle$ subject to $\kappa \wedge \pi \wedge \rho \wedge \zeta$.
- This gives the model:

$$
m_{2}^{\prime}=\left\{\left\langle\left\langle\vec{d}_{1}^{\prime}\right\rangle\right\rangle=10,\left\langle\left\langle\vec{d}_{1}\right\rangle\right\rangle=3,\left\langle\left\langle\vec{d}_{2}\right\rangle\right\rangle=3, \ldots,\left\langle\left\langle\vec{d}_{7}\right\rangle\right\rangle=2,\left\langle\left\langle\vec{d}_{8}\right\rangle\right\rangle=0\right\}
$$

Merging [Karr'76]

- The model m_{2}^{\prime} is interpreted as a matrix:

$$
\mathbf{M}_{2}=\left[\begin{array}{ccccccccc|c}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 10 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 3 \\
\vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

- The merge $\mathbf{M}_{1} \sqcup \mathbf{M}_{2}$ is as follows:

$$
\mathbf{M}_{1} \sqcup \mathbf{M}_{2}=\left[\begin{array}{ccccccccc|c}
1 & 0 & 0 & 0 & 0 & -2 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 0 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right]
$$

Step iii and iv: solving and maximisation

- Let μ now denote a formula that holds iff $\left\langle\left\langle\vec{d}_{7}\right\rangle\right\rangle+\left\langle\left\langle\vec{d}_{8}\right\rangle\right\rangle \neq 1$
- Presenting $\kappa \wedge \pi \wedge \rho \wedge \mu$ to a solver gives:

$$
m_{3}=\left\{\left\langle\left\langle\vec{d}_{1}^{\prime}\right\rangle\right\rangle=22,\left\langle\left\langle\vec{d}_{1}\right\rangle\right\rangle=8, \ldots,\left\langle\left\langle\vec{d}_{8}\right\rangle\right\rangle=0\right\}
$$

- Maximising $\left\langle\left\langle\overrightarrow{d_{1}^{\prime}}\right\rangle\right\rangle$ then gives:

$$
m_{3}^{\prime}=\left\{\left\langle\left\langle\vec{d}_{1}^{\prime}\right\rangle\right\rangle=26,\left\langle\left\langle\vec{d}_{1}\right\rangle\right\rangle=8, \ldots,\left\langle\left\langle\vec{d}_{8}\right\rangle\right\rangle=0\right\}
$$

- Form \mathbf{M}_{3} and calculate another merge:

$$
\mathbf{M}_{1} \sqcup \mathbf{M}_{2} \sqcup \mathbf{M}_{3}=\left[\begin{array}{ccccccccc|c}
1 & 0 & 0 & 0 & 0 & -2 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 1 & -1 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

- Repeating

$$
\mathbf{M}_{1} \sqcup \mathbf{M}_{2} \sqcup \mathbf{M}_{3} \sqcup \mathbf{M}_{4}=\left[\begin{array}{lllllllll|l}
1 & 0 & 0 & 0 & 0 & -2 & 0 & 0 & 0 & 0
\end{array}\right]
$$

- Conclude $d_{1}^{\prime}=2 d_{5}$

"With" versus "without" for intervals

block	insts	bits	runtime			
			guards/SAT	affine $/$ SAT	overall	SAS'10
inc	1	8	$0.2 \mathrm{~s} / 40$	$0.1 \mathrm{~s} / 5$	0.3 s	0.2 s
		32	$0.5 \mathrm{~s} / 136$	$0.2 \mathrm{~s} / 5$	1.0 s	23.0 s
shifter	2	8	$0.3 \mathrm{~s} / 60$	$0.1 \mathrm{~s} / 8$	0.4 s	0.3 s
		32	$0.8 \mathrm{~s} / 216$	$0.2 \mathrm{~s} / 8$	1.0 s	∞
swap	3	8	-	$0.1 \mathrm{~s} / 3$	0.1 s	0.1 s
		32	-	$0.1 \mathrm{~s} / 3$	0.1 s	0.2 s
flipper	4	8	$0.2 \mathrm{~s} / 40$	$0.2 \mathrm{~s} / 5$	0.4 s	0.5 s
		32	$0.9 \mathrm{~s} / 216$	$0.3 \mathrm{~s} / 5$	1.2 s	∞
abs	5	8	$2.5 \mathrm{~s} / 216$	$0.3 \mathrm{~s} / 8$	2.8 s	0.8 s
		32	$6.5 \mathrm{~s} / 792$	$0.3 \mathrm{~s} / 8$	6.8 s	∞
isign	7	8	$4.1 \mathrm{~s} / 360$	$0.2 \mathrm{~s} / 18$	4.3 s	4.5 s
		32	$10.7 \mathrm{~s} / 1320$	$0.4 \mathrm{~s} / 18$	11.1 s	∞
absolute	10	8	$2.8 \mathrm{~s} / 216$	$0.3 \mathrm{~s} / 8$	3.1 s	9.5 s
		32	$7.2 \mathrm{~s} / 792$	$0.3 \mathrm{~s} / 8$	7.5 s	∞

