
Introduction to the Analysis and Verification
of Hybrid Systems

Stefan Kowalewski

Robert Bosch GmbH, Corporate Research and Development, Frankfurt am Main,
Germany, stefan.kowalewski@de.bosch.com �

Abstract. This contribution provides an introduction to the formal analysis of
hybrid systems. It highlights different directions from which hybrid models and their
analysis have been approached in computer science and control theory. Fundamental
problems arising from the combination of discrete and continuous dynamics are
discussed and related articles in this volume are put in relation to the different
basic approaches.

1 Introduction

The combination of interacting discrete and continuous dynamics in one
model brings up the need for appropriate analysis methods. While such meth-
ods for purely discrete or for purely continuous systems have been existing
for decades, the formal analysis and verification of hybrid systems is a rela-
tively recent research problem and standard procedures are not yet available.
It was therefore one of the main tasks in the focussed research program Anal-
ysis and Synthesis of Technical Systems with Continuous-Discrete Dynamics
(KONDISK) of the German Research Council to develop new analysis and
verification approaches or extend the existing methods such that they can be
applied to hybrid systems. The four papers in this chapter [40,59,50,28] as
well as further contributions to this volume (e.g., [35,39,12,17] present differ-
ent solutions to this problem. They illustrate the broad spectrum of problem
classes, models and analysis procedures in KONDISK.

The purpose of this introductory article is to put the contributions of this
chapter into the perspective of a broader view on the formal analysis of hybrid
systems. We highlight the different historic starting points and directions and
discuss the main problems which have to be dealt with. Based on this, the
contributions are put in relation to the different approaches.

The paper is organized as follows. In the following section Modelling of
Hybrid Systems we revisit the problem of modelling hybrid systems because of
its effects on the analysis. The nature of hybrid systems as a model property
is discussed and three different starting points and directions are identified

� The insights and opinions expressed in this paper were developed while the au-
thor was with the Process Control Laboratory in the Department of Chemical
Engineering at the University of Dortmund, Germany.

stefan.kowalewski
Textfeld
Appeared in: S. Engell, G. Frehse, E. Schnieder (Eds.): Modelling, Analysis, and Design of Hybrid Systems.Lecture Notes in Control and Information Science, Vol. 279, pp. 153-171, Springer-Verlag, 2002.

stefan.kowalewski
Notiz
Accepted festgelegt von stefan.kowalewski

2 Stefan Kowalewski

to create hybrid modelling frameworks from discrete and continuous ones. In
the section Analysis of Hybrid Systems we discuss different levels of rigor of
the analysis methods and computational issues. An example is presented to
illustrate the theoretical computational limitations and the need for abstrac-
tion which arises from these results. A summary of the current state of the
art of hybrid systems analysis concludes the paper.

2 Modelling of Hybrid Systems

2.1 The Nature of Hybrid Systems

Before we take a closer look at the analysis and verification methods, we
discuss different approaches to modelling hybrid systems and their relation
to analysis problems and procedures. A hybrid system is usually defined as a
system which combines continuous and discrete dynamics. This definition is
superficial. To be more precise, the term “hybrid systems” refers to models,
not systems as such. A system is not hybrid by nature, but it becomes hybrid
by modelling it this way. Whether it makes sense to build a hybrid model
depends not only on the system, but also on the application and the purpose
of the model. The latter most often concerns the analysis that shall be per-
formed. So, there is a strong relationship between modelling and analysis of
hybrid systems.

Hybrid systems arise and must be analyzed whenever both abstraction
levels – continuous and discrete – have to be considered to solve a particular
problem. However, this does not exclude that during the analysis the problem
is mapped to a single abstraction level and solved there: As we will see later,
in many cases it is either not possible or not appropriate to perform the
complete analysis with a hybrid model. In this case it is often helpful to
abstract from the concrete problem, e.g. by discretizing the continuous part
and solving the problem using discrete analysis techniques. Thus, hybrid
systems analysis and verification is not only concerned with hybrid models,
but also with the problem of how to map hybrid problems into spaces where
they can be solved better. This will be discussed in more detail in Sec. 3.3.

2.2 Different Approaches to Hybrid Modelling Frameworks

In principle, there are three different ways to create a modelling framework
for hybrid systems:

1. The first option is to take existing discrete formalisms, e.g., finite au-
tomata, Petri nets or logics, and extend them by continuous variables
which evolve according to differential equations associated with discrete
states. Discrete transitions can then switch between continuous modes,
and the continuous variables can be reset when a transition takes place.
Resulting frameworks of this kind are hybrid automata [2] or hybrid Petri
nets [16].

Analysis and Verification of Hybrid Systems 3

2. The opposite direction is to extend models for continuous systems by
discrete mechanisms like switching or resetting time dependent continu-
ous variables. The resulting frameworks consist of differential equations,
algebraic equations and/or inequalities with both continuous and binary
variables. The latter are used to activate and deactivate terms by mul-
tiplication, e.g. to switch the right hand side of the state equation. This
class of systems is therefore often referred to as switched continuous sys-
tems [34].

3. The third approach is not to extend a formalism but to employ an existing
discrete model and an existing continuous model as they are and couple
them by appropriate interfaces. Prominent representatives of this con-
cept are commercial simulation tools like Simulink/Stateflow or Matrix-
X/Betterstate.

In the KONDISK program, all three approaches were employed. Hybrid
extensions of discrete formalisms are used, among others, by Decknatel et
al. in [17], Simon et al. in [50] and Huuck et al. in [28]. In the first two
cases, the model is based on Petri nets, in the third case the authors chose
hybrid automata. It is interesting to note that in [17] the hybrid dynamics
was realized solely by applying the modelling mechanisms already offered
by the Petri net tool DesignCPN. The underlying model did not have to be
extended. A good example for the second approach is [12]. The third approach
can be found in [39] and [40] in which a continuous state space model with
piecewise linear (or affine) dynamics is connected to a Petri net. The coupling
of discrete and continuous formalisms has also been pursued in KONDISK
by approaches to the simulation of hybrid systems (see [42] and [48]).

The three fundamental modelling approaches listed above are equivalent
in the sense that the models are equally expressive as long as comparable as-
sumptions about number spaces and permitted mathematical operations are
made. The choice of one of the approaches is therefore usually determined by
the scientific discipline: With only few exceptions, the first approach has been
followed by computer scientists whereas control theorists have preferred the
second and third approach. This is not surprising since the original domains
of interest in these two fields were on the opposite ends of the hybrid dynam-
ics spectrum – purely continuous dynamic systems in control theory, discrete
state systems in computer science. (And in the third approach, although
appearing to be a union of equally privileged formalisms, the continuous dy-
namics often was first and is still dominant at closer look. See, for instance,
the triggering of discrete transitions in Stateflow by the integration steps in
Simulink.)

The awareness of the opposite starting points and perspectives on hybrid
modelling in computer science and control is important for the perception of
research results from the other field. For example, in computer science it was
natural to choose timed models like timed automata [2] as the first class of
hybrid systems to investigate. Time can reasonably be modelled as a contin-

4 Stefan Kowalewski

uous variable and, from a computer science point of view, extending discrete
models by continuous time is the simplest way to obtain hybrid models. In
the beginning of the KONDISK program, I often experienced the miscon-
ception by control theorists that this would not be genuine hybrid systems
research. Looking from the continuous systems’ end of the hybrid dynamics
spectrum, they felt that “real” hybrid systems require more complex differ-
ential equations than ẋ = 1. In the meantime, this prejudice vanished and
I believe that it was the fruitful exchange in the KONDISK program which
helped to achieve this understanding. It is now commonly agreed on that
timed systems are an interesting class of hybrid systems, both with respect
to theoretical limitations of computer analysis (see Sec. 3.2) and practical
usefulness as an abstraction of more complex hybrid dynamics (see Sec. 3.3).
In this chapter, this is demonstrated by the papers [28] and [50] in which
timed automata or timestamp Petri nets, respectively, are used to analyze
hybrid systems.

A different issue in modelling hybrid systems is how to deal with uncer-
tainty. Often, for various reasons, there is not sufficient information available
to determine the exact next state of a transition or the exact time of switch-
ing. One way to deal with this issue is to use transition relations instead of
transition functions, like in nondeterministic automata. Another possibility
is to assign probabilities to competing transitions. Stochastic automata are
a model of this kind (see [35] in this volume). It is also possible to specify
probability distributions for the switching times of the discrete transitions,
like in stochastic Petri nets. In this volume, Wolter et al. present an exten-
sion to stochastic Petri nets, so-called fluid stochastic Petri nets, in which
a subset of the places carries a time-dependent continuous value instead of
discrete tokens (see [59]).

3 Analysis of Hybrid Systems

3.1 Simulation and Verification

Model-based analysis of hybrid systems can be performed on different levels
of rigor. For control engineers it is customary to build a simulation model
and use it simulate scenarios of interest. This means that the input values
and open decisions in the model are fixed before the model is executed. Then
properties of the system are inferred from the resulting output or state tra-
jectories. The shortcoming of this approach is that all the properties analyzed
by this procedure are only proved for the considered scenarios. It cannot be
excluded that there are other inputs for which the result would be different.
However, it has to be noted that in many applications this problem does not
occur because the relevant scenarios are easy to identify.

The activity of proving system properties for every possible choice of free
inputs and decisions is called formal verification (or, in the following, sim-
ply verification) [14]. The term originates from computer science where two

Analysis and Verification of Hybrid Systems 5

different directions of formal verification are distinguished, algorithmic and
deductive verification. Algorithmic verification, often called model-checking,
means that a computer algorithm is used which receives a model of a system
and a specification of its required behavior as input and then checks whether
the requirements hold for all possible behaviors of the system model. This is
done basically using search techniques, very often by computing the reachable
states of the system. Each verification algorithm is applicable to a particular
class of systems (e.g., finite transition systems).

In principle, algorithmic verification is only possible for such classes for
which it is guaranteed that the search procedure terminates. In the case of
hybrid systems, this is only true for very restricted classes (see Sec. 3.2). It is
therefore often necessary to find a finite abstraction of a hybrid system before
algorithmic verification can be applied. On the other hand, the advantage of
algorithmic verification is that the user only has to provide the system model
and the requirements and can leave the rest to the algorithm. No further
expertise and knowledge of the analysis technique is needed. However, a major
shortcoming in comparison to simulation is the computational complexity
resulting from the exhaustive search in discrete spaces.

The most important algorithmic verification procedure for hybrid systems
is reachability analysis. It answers the question whether for a given hybrid
system a certain hybrid state (discrete state and a region in the continuous
space) is reachable from the initial hybrid state. This problem is so important
because many problems can be reduced to a reachability problem.

When applying deductive verification, also called theorem proving, the
question whether a system has certain desired properties is answered by cre-
ating a proof. For this purpose, the user not only has to specify the system
behavior and the requirements in an appropriate logic, but also has to find
a suitable sequence of arguments. Although this is often supported by a set
of proof-rules which can be applied in a schematic way, in the end, the suc-
cess of the verification depends much more on the intuition, creativity and
experience of the user than it does for algorithmic verification. However, one
main advantage of deductive verification is that the application domain is
not restricted to systems with finite search spaces or finite approximations.
If a suitable theory is available, infinite systems (i.e., systems with infinitely
many states) can be handled also. This is important in the case of hybrid
systems which are infinite by definition due to the continuous part of their
state.

In this volume, several papers deal with algorithmic verification. Müller
et al. in [39] and Nenninger et al. in [40] present procedures for reachabil-
ity analysis. In both cases, the analysis is used to design controllers. In [50]
reachability is solved by analyzing whether those transitions which switch to
the relevant states (or markings, as this procedure is defined for Petri nets)
can not be blocked by the timing conditions. Again, this is used for design,
in this case to determine valid timer parameters of a controller. The paper

6 Stefan Kowalewski

by Huuck et al. ([28]) presents an approach in which algorithmic verification
and deductive verification is combined. The purpose of the combination is to
overcome the complexity problem of algorithmic verification by using deduc-
tion to structure the problem into smaller, more feasible subproblems [29].
Finally, [17] is a representative of the simulation approach to the analysis of
hybrid systems. The authors simulate different scenarios in a railway system
to determine the performance of the supervision system.

3.2 Computational Issues

It was mentioned before that exact algorithmic reachability analysis is only
feasible for very restricted classes of hybrid systems. For the other classes,
it is impossible to formulate an algorithm which computes the exact reach-
able state space for any system from this class in finite time. In other words,
the reachability problem is undecidable. The major part of hybrid systems
research in computer science has been concerned with identifying decidable
and undecidable classes of hybrid systems (with respect to reachability, which
is sometimes not mentioned explicitly). The control community, in contrast,
has much less interest in this issue. As a matter of fact, two papers in this
volume, [39] and [40], present reachability algorithms for a class of hybrid
systems for which reachability is actually undecidable. To resolve this appar-
ent contradiction, this section will provide a short introduction to the kind of
problems which are looked at in computer science research on decidability of
hybrid systems. It may help to understand not only the fundamental issues
but also the practical implication that undecidability should not necessarily
prevent engineers from developing reachability algorithms for the respective
class of systems.

Hybrid Automata The most popular hybrid systems model in computer
science is the hybrid automaton (HA) [1], see [28] in this volume for a formal
definition. Roughly speaking, the HA model complements (discrete) finite
automata by time-dependent continuous variables. While the system is in a
certain discrete state, these variables evolve according to differential equa-
tions, called flows, which are assigned to each discrete state. Conditions can
be formulated which have to be true while the system remains in a discrete
state. They are called invariants. When an invariant evaluates to false, the
discrete state must be left or must not be entered, respectively. The contin-
uous variables can be reset by the discrete transitions, and finally, so-called
guards represent conditions for taking a transition between discrete states.

Figure 1 shows an example of a HA which is borrowed from [27]. It belongs
to the simplest and historically first class of HA, i.e., timed automata (TA)
[2]. In a TA, the continuous variables are called clocks and their value is

Analysis and Verification of Hybrid Systems 7

always increasing with a rate of one 1. Resets can only be assignments of
zero, and the invariants and guards are independent inequalities or equalities
with rational constants for each clock. In the case of Fig. 1, we have two
discrete states, s1 and s2, and three clocks, a, b, and c. There are guards at
each of the three transitions, but only with transition t1 a reset (of the clocks
b and c) will be performed. The arrow symbol is used to separate the guard
from the reset. The invariant in s1 is a ≤ W ∧ b ≤ W ∧ c ≤ W , and in s2 it
is true, meaning that there is no condition restricting the entrance and the
visiting time in s2.

s1 s2

true

t1

t0 t2

a W
b W
c W

�
�
�

a W�

0 0b W c W b c� � � � �� � ��

0
0 < <

a
b W

c =

�
�

� � with > 0
and 0 < <

W
W�

Fig. 1. Example for a timed automaton

To understand the behavior of TA (or, in computer science terms, the
operational semantics of this model), it is helpful to know that TA were orig-
inally introduced by Alur and Dill in [2] as a generalization of ω-automata. ω-
automata were developed to model non-terminating systems like, for instance,
data base servers. They are automata over infinite words, which means their
language consists of infinite sequences of symbols. Their acceptance criteria
are based on accepting states which have to be visited infinitely often while
reading an accepted word. So, acceptance can only be decided by looking at
the infinite behavior.

The same is true for TA, only that the notion of infinity is not applied
to sequences but to time. The behavior of a TA is given by a set of runs
which are infinitely lasting trajectories in which discrete transitions (possibly
with resets) and time intervals with continuous growth of the clock values
alternate. Figure 2 shows a valid run for the TA from Fig. 1. It starts with
transition t0 at which the clocks b and c have the same value: b = c = γ
(note that this is not implied by the guard which would permit any value
between 0 and W for b). When b and c increase to W , the invariant of s1

will no longer permit to stay in this discrete state. Transition t1 is possible
because the guard is true, whereas t2 cannot be taken. Performing t1 triggers
the reset of b and c, and s1 can be entered again. When a = W becomes
true, transition t2 must be taken. After that, the system remains in s2 and

1 Like in Fig. 1, the corresponding flows ẋ = 1 are usually omitted in the graphical
representation of a TA.

8 Stefan Kowalewski

the clocks can increase to infinity. Therefore, the run in Fig. 2 is infinitely
lasting and, thus, is part of the behavior of the TA from Fig. 1.

t1t0 t2

t

a

W

�

b c�

0

a, b, c

Fig. 2. A valid run for the example from Fig. 1

What would happen, if a different value for b(t0) is chosen, e.g., b = γ/2?
In this case clock c would reach W first, the invariant would not permit further
residence in s1, but none of the two transitions could be taken because the
guards are false (note that a and c are still less than W). Obviously, the
behavior up to this point can not be extended to an infinitely lasting run – in
computer science jargon, “time stops” or “a time deadlock occurs”. In fact,
b(t0) = c(t0) = γ is a necessary condition for the existence of a run in the
example2.

Reachability Analysis of Hybrid Automata The (forward) reachability
analysis of hybrid automata has to determine all possible runs and check
whether the hybrid target state is visited during at least one of these runs.
Hybrid states are pairs (si, Rj) consisting of a discrete state si and a set
Rj of values of the continuous variables, often called a region. The analysis
algorithm roughly works as follows.

1. The starting point is the initial discrete state s0 and the initial region
R0 which is determined by intersecting the regions corresponding to the
guard of the entering transition and the invariant of the initial discrete
state. In our example, this would be (s0, R0) = (s1, {(a, b, c) ∈ Q|a =
0 ∧ 0 < b < W ∧ c = γ}).

2. The next step is to let the region grow according to the flow assigned
to the discrete state but neglecting the invariant (or in other words,
assuming that the system could remain in the discrete state forever).
In a TA, for instance, this means that all continuous variables increase
by a rate of one. In the example, the resulting region R1 is unbounded:
R1 = {(a, b, c) ∈ Q|c = a + γ ∧ a≤b≤a + W}).

2 For this reason, the TA from Fig. 1 can be found in proofs to model a function
which checks the equivalence of two values [27]. Note that b = c = γ holds also
at t2.

Analysis and Verification of Hybrid Systems 9

3. Obviously, not all of R1 is actually reachable because the invariant would
force the system to leave s0 as soon as it is violated. To determine the
values actually possible during this visit of s0, R1 is intersected with the
invariant (in the example: R2 = {(a, b, c) ∈ Q|(a, b, c) ∈ R1 ∧ a≤W ∧
b≤W ∧ c≤W}).

4. At this stage, the algorithm would take the list of previously visited
regions and check whether R2 (or a subset of it) had been computed for
s0 before. If this is case, it would abort the current search branch.

5. If not, the hybrid state (s0, R2) is added to the reachability set and the
algorithm will continue this search branch. Now, all possible transitions
from s0 have to be determined. In our example, there are only t1 and t2.
To find out which of them are viable, we have to check whether the guards
can become true for the values of a, b and c in R2. This is computed by
the intersection. In the case of t2 the result is empty, thus, the transition
is not possible. For t1 the result is R3 = {(a, b, c) ∈ Q|a = W − γ ∧ b =
W ∧ c = W}, so it can be taken.

6. The algorithm chooses one of the possible transitions and performs the
corresponding reset. The result is the region with which the system can
enter the new discrete state. In the example, the reset leads to R4 =
{(a, b, c) ∈ Q|a = W −γ∧b = 0∧c = 0}. Now, the second iteration starts
and the algorithm goes back to step 2.

7. The algorithm terminates when no more new transitions can be traversed.

There are tools available in which this algorithm or variants of it are
implemented. The most prominent are Kronos [60], Uppaal [32], and Hytech
[25]. The class of systems which can be handled by these tools differ, but they
have in common that the regions Ri can be represented by polyhedra.

For TA, this algorithm will always terminate. This means that the reach-
ability of TA is decidable [2]. However, even small generalizations can lead
to undecidability. This shall be illustrated by the example in Fig. 3 which
is inspired by similar examples in [27]. The only extension to the model is
that we allow one clock to be stopped and to be started again with the value
at stopping time. In other words, the flow can be either ẋ = 1 or ẋ = 0.
Such a clock is called a stopwatch [27], the resulting model is a stopwatch
automaton. In Fig. 3, d is a stopwatch while a, b, and c are clocks as in the
example before3.

Figure 4 will help to understand the behavior of the example. It shows a
fragment of a run with the choice of b(t0) = γ/2 4. Clock a can be regarded
as providing a clock tick with a constant frequency 1/W . In the fragment of
Fig. 4 it defines five time intervals δ1 to δ5.
3 As in Fig. 1, the flows of the clocks are omitted and only the flows of the stopwatch

are presented.
4 Note that the ti symbolize transitions and not points in time. However, for the

fragment of Fig. 4 there is no difference because each transition is taken only
once.

10 Stefan Kowalewski

s1

s5

s7

s2
s3

s4

s6s8

true

t1

t7

t1 3t1 2

t1 4

t8

t0

t4

t2
t3

t6

t9

t1 0

t11

t1 5

t5

a W
b W
c W

�
�
�

a W
b W
c W

�
�
�

a W
b W
c W
d W

�
�
�
�

a W
b W
c W

�
�
�

a W
b W
c W

�
�
�

0,
0

b W

b
d

�
�
��
�� 0

a W

a

�
�
��

0

a W

a

�
�
��

0

a W

a

�
�
��

0

a W

a

�
�
��

0

b W

b

�
�
��

true

0b
�
��

0c W c� � ��

b W b� � �� 0

0c W c� � ��

0

c W
d W

c

�
� �

�
��

0

c W

c

�
�
��

0, 0b W b c� � �� ��

0

0

a W c >

a

� �
�
��

0
0 < <

a
b W

c =

�
�

� �

0
a W

c =
�

�

d = 1 d = 1 d = 0

d = 1

d = 1

d = 1

d = 1

. . .

.

.

.

.

a W
b W
c W

�
�
�

a W
b W
c W

�
�
�

Fig. 3. Example for a stopwatch automaton with non-terminating reachability
analysis

t1

�1 �2 �3 �4 �5

t0 t3 t4 t5 t6 t7 t8 t9 t1 0 t11 t1 2 t1 3 t1 4t2

t

W

�

�/2

0

a
b
c
d

Fig. 4. A fragment of a run for the stopwatch automata from Fig. 3

Analysis and Verification of Hybrid Systems 11

• The purpose of δ1 is to synchronize clock b and stopwatch d, which is
done at t2. Note that apart from this change, all clocks have equal values
at t0 and at t3.

• When δ2 starts by entering s3, d is stopped. With t5, it is started again
and, because we chose c(t0) = 2·b(t0), it is now synchronized with c. At
the end of δ2 d = γ holds and the clocks again have the same values as
at t0.

• In δ3 it is checked whether c(t6) = d(t6). This is done by applying the
construction of Fig. 1. Transition t7 can only be taken if c(t6) = d(t6),
otherwise there would be a time deadlock. So, at the end of δ3, the run
can only proceed if c(t6) = d(t6). Since this requires c(t3) = 2·b(t3) in
δ2, the whole part of the TA from t0 to t9 can be regarded as a test of
b(t0) = c(t0)/2 = γ/2.

• In δ4, c is synchronized with b. The result is c(t11) = b(t9). Now, if we
consider the value of c at t0 and at t11, it becomes apparent that our
stopwatch automata did nothing else but the assignment c := c/2.

• The purpose of δ5 is to choose an arbitrary new value for b before s1 is
entered again and the next cycle begins. Of course, the time deadlock in
s5 can only be avoided, if the choice is such that b(t14) = b(t11)/2.

When the run is continued, this cycle will repeat and every time t11
is taken c will increase to half of its value at the beginning of the cycle.
This leads to an infinite sequence (γ, γ/2, γ/4, . . .) which asymptotically ap-
proaches zero but will never reach it. If we now consider the problem whether
state s8 is reachable in the automaton of Fig. 3, it is easy to see that the
algorithm described above will not terminate: Every time, the possible tran-
sitions from s6 are checked, c will have a new, smaller but positive value and
t11 has to be taken again.

In practice, that is, when applying tools like Kronos, Uppaal, and Hytech,
the algorithm will be aborted after some time. The reason for this is that the
tools were implemented for exact reachability analysis and therefore the ra-
tional values for storing the regions (e.g. the corner points) are represented
by two integers for the nominator and denominator, respectively. As a con-
sequence, infinite sequences, like the one for clock c at transition t11 in the
example above, would lead to memory overflows for the integers.

Of course, finding one example for which a particular algorithm will not
terminate does not prove undecidability of the general problem because the
example may be analyzable by other approaches. Actually, for this particu-
lar example it can be shown by deduction that s8 is unreachable. A proof
that reachability of stopwatch automata is undecidable can be found in [27]
together with several other decidability results. The proofs are conducted by
reducing the reachability problem to a problem which is known to be unde-
cidable. Some of the constructions used in the examples of Figs. 1 and 3 are
taken from these proofs.

12 Stefan Kowalewski

Discussion The undecidability of stopwatch automata does not mean that
any class of hybrid systems that is more general than TA is undecidable.
There have been other classes defined in which the flows are, for exam-
ple, differential inclusions or even linear differential equations with particular
properties, and decidability is achieved by certain restrictions on the guards
or resets [27,31]. But the fact remains that the decidability boundary is far
beyond the classes usually considered for control systems. So, what are the
practical implications of this theoretical result? The answer has four aspects.

• The first aspect still follows from theory: Even for undecidable classes
of hybrid systems, the reachability algorithm may well terminate for the
particular problem under consideration. It is also possible that backward
reachability will terminate while forward analysis does not, or vice versa.

• The second aspect is that it is often possible to find abstractions, which
still are sufficient models for the analysis problem but fall into decidable
classes (see Sec. 3.3).

• The third aspect is more pragmatic: It is usually a much bigger problem
to cope with the exponential complexity of the algorithm with respect
to the number of continuous variables (which adds to the discrete state
space explosion problem), so that even for decidable problems it may be
impossible to wait for the analysis result or memory overflows occur.

• Finally, from an engineering point of view, absolute exactness of the anal-
ysis is not appropriate because the models and the requirements already
are of limited accuracy. If, for example, s8 would represent a danger-
ous state in a technical process and reachability analysis should check
whether it will be avoided, ċ = 1 would only be an approximation of
the real clock speed. It would therefore be sufficient for the analysis, if
the sequence would be stopped when the value for c is rounded down to
zero. Thus, in applications, it is reasonable to use approximate analysis
with numerical rounding as long as the error is bounded (as it has been
practice in control engineering for a long time).

For these reasons it can be justified to ignore the undecidability issue
when developing analysis procedures for hybrid systems.

3.3 Abstraction

The computational problems of reachability analysis (undecidability, com-
plexity) are the motivation for a very active area in hybrid systems research
which is concerned with abstraction techniques. The basic idea is the follow-
ing: Instead of trying to analyze the original system under investigation, the
analysis problem is mapped into a class of problems which is easier to solve.
The mapping consists of two steps. First, a substitute model is created by
omitting details from the original model (for example by replacing the exact
continuous state by a discretized one). This model will include the behavior

Analysis and Verification of Hybrid Systems 13

of the original system but, in general, allow additional behavior because of
the less concrete specification. In the second step the original property to
check is generalized so that it can be reformulated for the substitute model.
This kind of mapping (and its result) is called an abstraction.

The first advantage of abstractions is that the resulting model is rougher
and, thus, often simpler and analyzable with less computational effort. Of
course, this gain of efficiency must be paid for by a loss of accuracy. The con-
sequence for dynamic models is that the degree of uncertainty will increase.
For instance, state space discretization of a deterministic continuous system
in general will lead to a nondeterministic discrete system. This means for
the analysis that the results can be inconclusive. If, for example, reachability
analysis of an abstracted system shows that an abstracted state region is
reachable, this could be because the original target region is reachable in the
concrete system. But it may as well be that it is just one of the additional
trajectories in the abstracted model which reaches the target region, or that
the reachable part of the target region was just added by the abstraction.
However, if the abstract region is not reachable, we can be sure that the cor-
responding concrete region is not reachable in the original system, neither.
This is the second advantage of abstractions (which general estimations do
not have): Problems can be posed such that one of the possible analysis results
is conclusive and provides a guaranteed solution to the original problem.

Because of the potential inconclusiveness and the loss of accuracy, ab-
stractions are only useful if two conditions are fulfilled: First, the properties
of interest must be formulated such that conclusive results are possible, e.g.,
reachability of forbidden states for a conservative safety analysis. Second, the
level of uncertainty of the dynamics must not be so low that only inconclusive
results exist (e.g., the whole state space becomes reachable).

This problem and further issues concerning abstractions of hybrid systems
are discussed, for example, by Lunze and Raisch in this volume in [35] for
the case of discrete systems as substitute models. In [4], Alur et al. provides
a survey on fundamental theoretical results from computer science on this
topic. Particular methods to generate a discrete abstraction for a given hybrid
or continuous system are presented, for instance, in [13,15,22,47]. Further
approaches can be found in the special issue [20]. The idea of representing
continuous dynamic systems by discrete abstractions, however, is older than
the recent research on hybrid systems. It was already the basis of the work
on qualitative simulation, see for example [30].

Abstraction by Hybrid Automata The abstraction of switched contin-
uous systems with linear or even nonlinear differential equations by discrete
automata is a relatively rough approximation. All the quantitative informa-
tion about the dynamics is lost and replaced by a qualitative description. One
way to save quantitative information is to capture the arising uncertainty in
stochastic models (see [59] and [35] in this volume). Another possibility is to

14 Stefan Kowalewski

use hybrid automata as abstractions [26,51–54]. The remainder of this section
is devoted to the latter approach.

As in most work on abstraction of switched continuous systems, the basis
of this approach is an orthogonal partitioning of the continuous state space.
This means that each dimension is divided into bounded or unbounded in-
tervals. The result are hyper–rectangles as partition cells and hyper–planes
as boundary manifolds. The abstraction by hybrid automata then consists
of three steps: First, the discrete state space is defined based on the parti-
tions. Second, the continuous dynamics in each partition cell is abstracted so
that it complies to the desired class of hybrid automata. In the third step,
the discrete transitions are determined by analyzing which partition cells are
connected by trajectories in the abstracted dynamics.

For the first step, it is straightforward to map each partition cell into a
discrete state. If we choose TA as the target model, however, this construction
has the disadvantage that the state can move from a cell to a neighbored
one in zero time. Thus, zero will be the lower time limit for each transition
and, consequently, each trajectory in the abstracted state space could be
traversed with zero time consumption. To avoid this undesired idealization,
the discrete states can be defined to lie on the boundary hyper–planes between
cells [53,54,51].

The abstraction of the continuous dynamics depends on the chosen class
of hybrid automata. For TA, we have to determine the upper and lower limit
of the time that the continuous state can reside in a partition cell or, in the
case of mapping discrete states to boundary hyper–planes, of the time that
is needed to move from one boundary hyper-plane to the next.

The orthogonal partitioning, however, suggests a further class of hybrid
automata for abstraction, namely Rectangular Automata (RA) [52]. Roughly
speaking, in a RA the invariants, guards, reset sets and flows are rectangular
predicates, which means they are specified by intervals (possibly degraded to
points) for each continuous variable or its time derivative, respectively. For a
formal definition see [27]. In the work described here, the guards only check
the equivalence of one variable to one of its bounding values, and the resets
are always assignments of a bounding value to a variable.

The abstraction of the switched continuous system with orthogonal par-
titioning to a RA is straightforward: The invariants, guards, and resets are
given by the partition boundaries. The only problem left to solve is to find
upper and lower limits for the flow intervals. For non-trivial systems, the
corresponding optimization problem cannot be solved analytically. In these
cases the flows can be approximated conservatively by interval arithmetics
[52,51].

Approximate Analysis of Rectangular Automata At this stage the
question arises how the resulting RA can be analyzed algorithmically. In Sec.
3.2 it was demonstrated that reachability of stopwatch automata is undecid-

Analysis and Verification of Hybrid Systems 15

able, and RA obviously are more general than stopwatch automata. Moreover,
the numerical problems due to the integer arithmetics of the mentioned tools
for HA apply to RA, too. In this section, an algorithm is sketched which
overcomes these problems by conservatively approximating the reachable re-
gions in a RA [43]. The first version of the algorithm was introduced in [44],
a more complex version with smaller over–approximations was presented in
[46]. In the following, only the first version is sketched in order to provide an
impression of the basic idea.

The algorithm is based on the concept of faces. A face is a rectangular
predicate with one dimension fixed to a certain value. The rationale for in-
troducing faces is to use rectangular faces to represent non-rectangular sets.
A face-region F is a set {F1, . . . , Fq} where each Fi is a face. The semantics
of F is the convex hull over its q faces, i.e. 〈F〉 = convexhull{〈F1〉, . . . , 〈Fq〉}.
This is shown for an example in Fig. 5 where a face-region F1 is represented
by the two faces F1 and F2. In practice, the faces of a face-region over n
variables are derived from 2n constraints of the form xj = l1 or xj = l2. In
the example, the face F1 corresponds to x1 = 1 and the face F2 to x2 = 7,
with the empty faces for x1 = 7 and x2 = 1 being omitted.

Fig. 5. Reachability analysis of RA using faces

A reachable face-region within the invariant can be represented by faces
that lie on the invariant’s bounds. Let F1 be a reachable face-region in a
discrete state v1. Now we want to compute the new face-region F2 in another
discrete state v2 that is adjacent to v1 in terms of the invariant conditions.
Then we can first check if any face of F1 is within the invariant condition of
v2. In our example this holds for F2. So, this face can be used to determine a
reachable region F2 in discrete state v2. This is done by determining for each
boundary l of an invariant of v2 a face as the part of invariant l that can be
reached starting from F2 according to the possible flow in v2. Here, only for
the boundary x1 = 7 a face can be found, namely F3.

16 Stefan Kowalewski

We use the computation of F2 from F1 in the example in Fig. 5 to show
how an outgoing face can be computed from an ingoing face. First we de-
termine a time interval in which any point within F1 will be moved to F2

according to the flow in dimension x2. The distance between F1 and F2 in
dimension x2 ranges between 2 (=7-5) and 5 (=7-2). With a flow 1 ≤ ẋ2 ≤ 2
in v1 this distance can/must be cleared within a time interval T = [1; 5].
Since the flow in each dimension is independent from the other dimensions,
we can now use this time interval to compute how any point in F1 will be
shifted in the other dimensions while moving towards F2. In our example,
the only other dimension is x1 for which we have a fixed flow ẋ1 = 1. So in
the time interval T = [1; 5] a point starting from x1 = 1 can flow to values
ranging from 2 to 6. This yields F2 with 2 ≤ x1 ≤ 6 ∧ x2 = 7.

The complete reachability analysis is performed by considering all out-
going faces of an initial discrete state as ingoing faces to adjacent discrete
states to which control switches exist. For these incoming faces then the
outgoing faces within the invariants of the adjacent discrete states are com-
puted. In the next step these newly computed faces are considered as ingoing
to all adjacent discrete states again and so an iteration evolves. This iter-
ation terminates when all reachable faces of a given automaton are found.
The termination is guaranteed, since RA are always defined over a finite dis-
crete state space and our analysis is approximate. Due to rounding in the
approximative analysis there is only a finite number of points considered in
the continuous state space. Thus, there is also only a finite number of faces
that the algorithm can find within this state space.

Example Using the algorithm described in the previous subsection, the
abstraction of switched continuous systems by RA can be practically applied
to the analysis of switched continuous systems. We illustrate the results of
this kind of analysis by a small example taken from [45]. The example is a
two-tank system in which the first tank is filled by a fixed input flow Fin and
is emptied into Tank 2 through a connecting pipe (see Fig. 6). The outflow
of Tank 2, which is located on a lower level than Tank 1 (height difference:
H), is denoted by Fout. The flow in the connecting pipe depends on Fin, the
liquid levels h1 and h2 in both tanks, and the setting of the valve controlling
the flow F12. The latter can be in two positions, half–open and open.

The dynamical behavior of this switched continuous system can be de-
scribed as follows. The state vector is (h1, h2), and the variable valve denotes
the input of the system. Changes of the gradient field defined by Eq. 1 occur
when either valve is switched to another discrete value, or when h2 exceeds H .
The normalized parameters are: A1 = 1.14 · 10−2, A2 = 1.98 · 10−3, H = 0.4,
Fin = 1.11 · 10−4, K1

1 = 1.2 · 10−4, K1
2 = 3.4 · 10−4, and K2 = 1.5 · 10−4.

ḣ1 = (Fin − F12)/A1,

ḣ2 = (F12 − Fout)/A2,

Analysis and Verification of Hybrid Systems 17

Fig. 6. Scheme of the two-tank system

h2 < H : F12 = K1 ·
√

h1,

h2 ≥ H : F12 = K1 ·
√

h1 − h2 + H if h1 ≥ h2 − H, (1)
F12 = 0 else,

Fout = K2 ·
√

h2,

valve =
{ ′half−open′ : K1 = K1

1′open′ : K1 = K2
1

The analysis is concerned with the following scenario. We assume that
the initial liquid heights are h1 = [0.2, 0.3] and h2 = [0.2, 0.3] and that
valve = ′half−open′ applies. Since F12 is smaller than Fin at this setting, h1

will rise. To prevent an overflow of Tank 1 the controller switches the value
of valve to ’open’ as soon as it receives the information that h1 has reached
the value h1,S = 0.8. As a consequence, h1 will start to decrease immediately
and h2 will increase. The analysis shall check whether opening the valve can
lead to a situation in which the limit h2 > 0.9 is exceeded.

The abstraction is performed according to the procedure described above.
The range of h1 and h2 is divided into 10 intervals each of equal length
which leads to 100 discrete states in the RA. The result of the reachability
analysis using the presented algorithm is shown in Fig. 7. The grey-shaded
area marks the region which is determined as reachable from the dark-shaded
initial region. To provide a better understanding of the analysis result, the
continuous trajectories starting at the corners of the initial region are drawn
additionally. The plot reveals that the critical region with h2 > 0.9 is found

18 Stefan Kowalewski

to be reachable, i.e. the switching value h1,S was not chosen correctly to avoid
an overflow of Tank 2. 5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

h1 [m]

h2
 [m

]

Fig. 7. Analysis results

The example demonstrates the degree of over–estimation which is the
price for the simpler analysis model. It also hints at a problem arising from
the orthogonal partitioning: In the first part of the trajectory, the abstraction
results in reachability of complete partition cells. This is because the gradient
field approaches the trajectories to the equilibrium point from both sides
and change the sign of direction in both dimensions. This affect can lead to
bad over–approximations which make the results inconclusive. For a more
thorough analysis of this example, the reader is referred to [43].

Experiences Empirical data about the efficiency of this and other ap-
proaches to the verification of hybrid systems can be found in [43,51,56].
Experiences are reported for several examples with different complexity of
the discrete part and the continuous part as well as for different abstrac-
tion and analysis methods. The abstraction of switched continuous systems
5 Obviously, in this example the reachable region can easily be determined by sim-

ulation. However, for more complex systems exhaustive simulation will become
impossible.

Analysis and Verification of Hybrid Systems 19

into TA or RA by interval arithmetics was performed for three–dimensional
systems and discretizations with roughly 800 cells or discrete states, resp.
[51]. Computing time on a PC (Pentium II, 266 MHz) was in the order of
20 minutes for RA and 40 minutes for TA. In [43] the reachability analy-
sis of RA was applied to a more complex version of the two–tank example
in the previous subsection. The system was three–dimensional (a continuous
valve was added) and the state space was partitioned into 600 rectangles.
The analysis took 11 minutes. In [56], the problem which is also treated by
Wolter et al. ([59] in this volume) is solved using a TA model. The largest
model was three–dimensional (three workpieces) with a discretization into
seven intervals for each dimension (i.e., the temperatures of the workpieces).
Computing time was 3 hours.

3.4 Alternative Approaches

An interesting alternative approach in the research on analysis of hybrid sys-
tems is the application of optimization techniques. The use of mathematical
programming for the analysis of switched continuous models was suggested by
Dimitriadis et al. [18,19]. The reachability problem is reformulated as an op-
timization problem in the discrete time domain which can be solved by mixed
integer programming. Basically, the optimization determines the worst possi-
ble behavior, meaning that the system is most often in an undesired region of
the continuous state space. The approach is general in the sense that it can
be applied to hybrid systems as well as to purely discrete or purely continu-
ous systems. Its strength lies in the ability to take advantage of well tested
and efficient optimization procedures. A limitation is given by the fact that
the size of the mixed integer program grows with the product of the number
of discrete time steps and the number of equations and logical expressions
describing the plant and the controller, respectively. A similar approach has
been followed by Bemporad and Morari [11]. Here, an iterative scheme is used
to perform conventional reachability analysis. This scheme avoids setting up
a huge one-step optimization problem which is most likely not tractable. It
can therefore be applied to larger problems than the approach of [18,19].
The verification method is part of a comprehensive modelling and analysis
approach to hybrid systems, including a scheme for model-predictive control
[10]. Further representatives of the mathematical programming approach to
verification are Park and Barton who solve purely discrete model checking
problems by integer programming [41]. In this volume, Stursberg et al. em-
ploy optimization techniques to design control policies for hybrid systems
(see [55]).

4 Conclusions

The paper presented an overview on different approaches to the modelling
and analysis of hybrid systems. We discussed the theoretical problem of un-

20 Stefan Kowalewski

decidability and its practical implications. Approaches to overcome this and
other challenges like applicability to large systems were sketched.

The current status of hybrid systems analysis can be characterized as fol-
lows. The theoretical foundations are largely established, the main obstacles
on the way to practical application are identified, and first progress in this
direction is made. The major challenge is still the computational complexity
of the analysis procedures. The contributions to this volume provide good
examples of promising approaches to move the research in hybrid systems
analysis nearer to practical application.

For more information about the analysis of hybrid systems the reader is
referred to the numerous proceedings volumes and to special issues of various
control journals which appeared in the recent years. The main conference se-
ries are Hybrid Systems [23,8,3,9,6], Hybrid Systems: Computation and Con-
trol [37,24,57,36], or Automation of Mixed Processes (in future: Analysis and
Design of Hybrid Systems) [61,21]. Examples for special issues on Hybrid
Systems are [7,49,5,38], a survey on the control of hybrid systems can be
found in [33]. A monograph is also available [58].

5 Acknowledgments

The results and opinions presented in this paper were developed while I
was a member of the Process Control Laboratory in the Chemical Engi-
neering Department at the University of Dortmund. They are the result of
many discussions with colleagues and partners in several research projects.
I am in particular grateful to Nanette Bauer, Paul Chung, Sebastian En-
gell, Holger Graf, Hans-Michael Hanisch, Oded Maler, Bruce Krogh, Yassine
Lakhnech, Angelika Mader, Peter Niebert, Jörg Preußig, Olaf Stursberg, and
Heinz Treseler. Apart from the KONDISK program, the following research
projects contributed to the presented results and experiences: the ESPRIT
LTR project Verification of Hybrid Systems (VHS) funded by the European
Commission (see [38]), the temporary graduate school (“Graduiertenkolleg”)
Modelling and Model-Based Design of Complex Technical Systems funded by
the German Research Council (DFG), and the exchange programs British-
German Academic Research Collaboration (ARC) with the British Council
and Project-related Exchange of Personnel with the NSF both funded by the
German Academic Exchange Service (DAAD).

References

1. R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138:3–34, 1995.

2. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183–235, 1990.

Analysis and Verification of Hybrid Systems 21

3. R. Alur, T. A. Henzinger, and E. D. Sontag, editors. Hybrid Systems III:
Verification and Control, volume 1066 of Lecture Notes in Computer Science.
Springer, 1996.

4. R. Alur, T.A. Henzinger, G. Lafferiere, and G.J. Pappas. Discrete abstractions
of hybrid systems. Proceedings of the IEEE, 88(7):971–984, July 2000.

5. P. Antsaklis, editor. Special Issue on Hybrid Systems: Theory and Applications,
volume 88, no. 7 of Proceedings of the IEEE, July 2000.

6. P. Antsaklis, W. Kohn, M. Lemmon, A. Nerode, and S. Sastry, editors. Hybrid
Systems V, volume 1567 of Lecture Notes in Computer Science. Springer, 1999.

7. P. Antsaklis and A. Nerode, editors. Special Issue on Hybrid Control Systems,
volume 43 of IEEE Transactions on Automatic Control, April 1998.

8. P. Antsaklis, A. Nerode, W. Kohn, and S. Sastry, editors. Hybrid Systems II,
volume 999 of Lecture Notes in Computer Science. Springer, 1995.

9. P. Antsaklis, A. Nerode, W. Kohn, and S. Sastry, editors. Hybrid Systems IV,
volume 1273 of Lecture Notes in Computer Science. Springer, 1997.

10. A. Bemporad and M. Morari. Control of systems integrating logic, dynamics,
and constraints. automatica, 35(3):407–427, 1999.

11. A. Bemporad and M. Morari. Verification of hybrid systems using mathematical
programming. In Frits W. Vaandrager and Jan H. van Schuppen, editors, Hy-
brid Systems: Computation and Control, Proc. 2nd Int. Workshop, HSCC’99,
Berg en Dal, The Netherlands, March 1999, Lecture Notes in Computer Science
1569, pages 31–45. Springer, 1999.

12. M. Buss, M. Glocker, M. Hardt, O. von Stryk, R. Bulirsch, and G. Schmidt.
Nonlinear hybrid dynamical systems: Modeling, optimal control, and applica-
tions. In S. Engell, G. Frehse, and E. Schnieder, editors, Modelling, Analysis,
and Design of Hybrid Systems, Lecture Notes in Control and Information Sci-
ence, pages 311–336. Springer, 2002. (This volume).

13. A. Chutinan and B.H. Krogh. Computing approximating automata for a class
of linear hybrid systems. In Hybrid Systems V: Proc. Int. Workshop, Notre
Dame, USA, Lecture Notes in Computer Science 1567, pages 16–37. Springer,
1999.

14. E.M. Clarke and R.P. Kurshan. Computer-aided verification. IEEE Spectrum,
pages 61–67, June 1996.

15. T. Dang and O. Maler. Reachability analysis via face lifting. In T.A. Henzinger
and S. Sastry, editors, Hybrid Systems: Computation and Control, Proc. 1st Int.
Workshop, HSCC’98, Berkeley, USA, March 1998, Lecture Notes in Computer
Science 1386, pages 96–109. Springer, 1998.

16. R. David and H. Alla. Petri nets and Grafcet. Prentice Hall, New York, 1992.

17. G. Decknatel, R. Slovák, and E. Schnieder. Definition of a type of continuous-
discrete high-level petri nets and its application to the performance analysis
of train protection system. In S. Engell, G. Frehse, and E. Schnieder, editors,
Modelling, Analysis, and Design of Hybrid Systems, Lecture Notes in Control
and Information Science, pages 355–368. Springer, 2002. (This volume).

18. V.D. Dimitriadis, N. Shah, and C.C. Pantelides. A case study in hybrid process
safety verification. Computers and Chem. Eng., 20, Suppl.:S503–S508, 1996.

19. V.D. Dimitriadis, N. Shah, and C.C. Pantelides. Modelling and safety verifi-
cation of dicrete/continuous processing systems. AIChE Journal, 43(4):1041–
1059, 1997.

22 Stefan Kowalewski

20. S. Engell, editor. Special Issue on Discrete Event Models of Continuous Sys-
tems, volume 6, no. 1 of Mathematical and Computer Modelling of Dynamical
Systems, March 2000.

21. S. Engell, S. Kowalewski, and J. Zaytoon, editors. 4th Int. Conf. on Automa-
tion of Mixed Processes: Hybrid Dynamic Systems (ADPM 2000), Dortmund,
Germany. Shaker Verlag, Aachen, 2000.

22. M. Greenstreet and I. Mitchell. Reachability analysis using polygonal projec-
tions. In Frits W. Vaandrager and Jan H. van Schuppen, editors, Hybrid Sys-
tems: Computation and Control, Proc. 2nd Int. Workshop, HSCC’99, Berg en
Dal, The Netherlands, March 1999, Lecture Notes in Computer Science 1569,
pages 103–116. Springer, 1999.

23. R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, editors. Hybrid Sys-
tems, volume 736 of Lecture Notes in Computer Science. Springer, 1993.

24. T. A. Henzinger and S. Sastry, editors. Hybrid Systems – Computation and Con-
trol (HSCC’98), volume 1386 of Lecture Notes in Computer Science. Springer,
1998.

25. T.A. Henzinger, P.S. Ho, and H. Wong-Toi. Hytech: A model checker for hybrid
systems. Software Tools for Technology Transfer, 1(1,2):110–122, 1997.

26. T.A. Henzinger, P.S. Ho, and H. Wong-Toi. Algorithmic analysis of nonlin-
ear hybrid systems. IEEE Transactions on Automatic Control, 43(4):540–554,
1998.

27. T.A. Henzinger, P.W. Kopke, A. Puri, and P.Varaiya. What’s decidable about
hybrid automata. J. Comp. Syst. Science, 57:94–124, 1998.

28. R. Huuck, B. Lukoschus, G. Frehse, and S. Engell. Compositional verification of
continuous-discrete systems. In S. Engell, G. Frehse, and E. Schnieder, editors,
Modelling, Analysis, and Design of Hybrid Systems, Lecture Notes in Control
and Information Science, pages 225–246. Springer, 2002. (This volume).

29. S. Kowalewski, P. Herrmann, S. Engell, R. Huuck, H. Krumm, Y. Lakhnech,
and B. Lukoschus. Approaches to the formal verification of hybrid systems.
at-Automatisierungstechnik, 49(2):66–74, 2001.

30. B. Kuipers. Qualitative simulation. Artificial Intelligence, 29:289–338, 1986.
31. G. Lafferiere, G.J. Pappas, and S. Yovine. A new class of decidable hybrid

systems. In Frits W. Vaandrager and Jan H. van Schuppen, editors, Hybrid
Systems: Computation and Control, Proc. 2nd Int. Workshop, HSCC’99, Berg
en Dal, The Netherlands, March 1999, volume 1569 of Lecture Notes in Com-
puter Science, pages 137–151. Springer, 1999.

32. K.G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. Software Tools
for Technology Transfer, 1(1,2):134–152, 1997.

33. M. Lemmon, K. He, and I. Markovsky. Supervisory hybrid systems. IEEE
Control Systems Magazine, 19:42–55, August 1999.

34. D. Liberzon and A. S. Morse. Basic problems in stability and design of switched
systems. IEEE Control Systems Magazine, 19, August 1999.

35. J. Lunze and J. Raisch. Discrete models for hybrid systems. In S. Engell,
G. Frehse, and E. Schnieder, editors, Modelling, Analysis, and Design of Hy-
brid Systems, Lecture Notes in Control and Information Science, pages 67–82.
Springer, 2002. (This volume).

36. N. Lynch and B. H. Krogh, editors. Hybrid Systems – Computation and Control
(HSCC 2000), volume 1790 of Lecture Notes in Computer Science. Springer,
2000.

Analysis and Verification of Hybrid Systems 23

37. O. Maler, editor. Hybrid and Real-Time Systems (HART’97), volume 1201 of
Lecture Notes in Computer Science. Springer, 1997.

38. O. Maler, editor. Special Issue on Verification of Hybrid Systems, volume 7,
issue 4 of European Journal of Control, 2001.

39. C. Müller, P. Orth, D. Abel, and H. Rake. Synthesis of a discrete control for
hybrid systems by means of a petri-net-state-model. In S. Engell, G. Frehse,
and E. Schnieder, editors, Modelling, Analysis, and Design of Hybrid Systems,
Lecture Notes in Control and Information Science, pages 295–310. Springer,
2002. (This volume).

40. G. Nenninger and V. Krebs. Reachability analysis and control of a special
class of hybrid systems. In S. Engell, G. Frehse, and E. Schnieder, editors,
Modelling, Analysis, and Design of Hybrid Systems, Lecture Notes in Control
and Information Science, pages 173–192. Springer, 2002. (This volume).

41. T. Park and P.I. Barton. Implicit model checking of logic based control systems.
AIChE Journal, 43(9):2246–2260, 1997.

42. T. Pawletta, B. Lampe, S. Pawletta, and W. Drewelow. A DEVS-based ap-
proach for modeling and simulation of structure dynamics in hybrid systems.
In S. Engell, G. Frehse, and E. Schnieder, editors, Modelling, Analysis, and
Design of Hybrid Systems, Lecture Notes in Control and Information Science,
pages 107–130. Springer, 2002. (This volume).

43. J. Preußig. Formale Überprüfung der Korrektheit von Steuerungen mittels rek-
tangulärer Automaten. PhD thesis, Department of Chemical Engineering, Uni-
versity of Dortmund, Germany, 2000. (in German).

44. J. Preußig, S. Kowalewski, T.H. Henzinger, and H. Wong-Toi. An algorithm
for the approximate analysis of simple rectangular automata. In Proc. 5th Int.
School and Symposium on Formal Techniques in Fault Tolerant and Real Time
Systems, Lyngby, Denmark, 1998, Lecture Notes in Computer Science 1486,
pages 228–240. Springer, 1998.

45. J. Preußig, O. Stursberg, and S. Kowalewski. Reachability analysis of a class
of switched continuous systems by integrating rectangular approximation and
rectangular analysis. In Frits W. Vaandrager and Jan H. van Schuppen, ed-
itors, Hybrid Systems: Computation and Control, Proc. 2nd Int. Workshop,
HSCC’99, Berg en Dal, The Netherlands, March 1999, Lecture Notes in Com-
puter Science 1569, pages 209–222. Springer, 1999.

46. J. Preußig and H. Wong-Toi. An procedure for the reachability analysis of
rectangular automata. In Proc. American Control Conference, pages 1674–
1678, 2000.

47. J. Raisch and S. O’Young. Discrete approximation and supervisory control of
continuous systems. IEEE Trans. Automatic Control, 43(4):569–573, 1998.

48. M.A. Pereira Remelhe, S. Engell, and M. Otter. An environment for integrated
object–oriented modeling of systems with complex continuous and discrete dy-
namics. In S. Engell, G. Frehse, and E. Schnieder, editors, Modelling, Analysis,
and Design of Hybrid Systems, Lecture Notes in Control and Information Sci-
ence, pages 83–106. Springer, 2002. (This volume).

49. J.M. Schumacher, A.S. Morse, C.C. Pantelides, and S. Sastry, editors. Special
Issue on Hybrid Systems, volume 35 of Automatica, March 1999.

50. C. Simon, K. Lautenbach, H.-M. Hanisch, and J. Thieme. Using parameter-
ized timestamp petri nets in automatic control. In S. Engell, G. Frehse, and

24 Stefan Kowalewski

E. Schnieder, editors, Modelling, Analysis, and Design of Hybrid Systems, Lec-
ture Notes in Control and Information Science, pages 211–224. Springer, 2002.
(This volume).

51. O. Stursberg. Analyse gesteuerter verfahrenstechnischer Prozesse durch
Diskretisierung. PhD thesis, Department of Chemical Engineering, University
of Dortmund, Germany, 2000. (in German).

52. O. Stursberg and S. Kowalewski. Approximating switched continuous systems
by rectangular automata. In Proc. European Control Conference, 1999. CD-
ROM, file 1014–4.

53. O. Stursberg and S. Kowalewski. Analysis of controlled hybrid processing sys-
tems based on approximation by timed automata using interval arithmetics. In
Proc. 8th IEEE Mediterranean Conference on Control and Automation, 2000.
CD-ROM, file TA1–3.

54. O. Stursberg, S. Kowalewski, and S. Engell. On the generation of timed discrete
approximations for continuous systems. Mathematical and Computer Modelling
of Dynamical Systems, 6(1):51–70, 2000. Special Issue on ”Discrete Event Mod-
els of Continuous Systems”.

55. O. Stursberg, S. Panek, J. Till, and S. Engell. Generation of optimal control
policies for systems with switched hybrid dynamics. In S. Engell, G. Frehse,
and E. Schnieder, editors, Modelling, Analysis, and Design of Hybrid Systems,
Lecture Notes in Control and Information Science, pages 337–368. Springer,
2002. (This volume).

56. H. Treseler. Ein Rechnerwerkzeug zur formalen Verifikation diskret gesteuerter
verfahrenstechnischer Prozesse. PhD thesis, Department of Chemical Engineer-
ing, University of Dortmund, Germany, 2001. (in German).

57. F. Vaandrager and J. van Schuppen, editors. Hybrid Systems – Computation
and Control, Proc. 2nd Int. Workshop HSCC’99, Berg en Dal, The Netherlands,
March 1999, volume 1569 of Lecture Notes in Computer Science. Springer, 1999.

58. A. van der Schaft and H. Schumacher. An Introduction to Hybrid Systems,
volume 251 of Lecture Notes in Control and Information Science. Springer,
London, 2000.

59. K. Wolter, A. Zisowski, and G. Hommel. Performability models for a hybrid
reactor system. In S. Engell, G. Frehse, and E. Schnieder, editors, Modelling,
Analysis, and Design of Hybrid Systems, Lecture Notes in Control and Infor-
mation Science, pages 193–210. Springer, 2002. (This volume).

60. S. Yovine. Kronos: a verification tool for real-time systems. Software Tools for
Technology Transfer, 1(1,2):123–133, 1997.

61. Janan Zaytoon, editor. 3rd Int. Conf. on Automation of Mixed Processes: Hy-
brid Dynamic Systems (ADPM’98), Reims, France. Universit de Reims, 1998.

