
Precise Control Flow Reconstruction Using Boolean Logic

ABSTRACT
This paper presents a SAT-based method for control flow
graph reconstruction from executable code. The key idea of
the technique is to express the semantics of each basic block in
a program using Boolean logic, followed by inferring pre- and
postconditions for each block through interleaved forward
and backward analysis. In particular, the technique relies on
register-wise value-set abstractions, which are subsequently
refined using alternating forward and backward analyses.
Experimental evidence shows that this approach, despite
being sound, recovers the control flow graph precisely for
different real-world benchmarks.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Assertion checkers; model checking; formal meth-
ods; F.3.1 [Logics and Meanings of Programs]: Speci-
fying and Verifying and Reasoning About Programs—As-
sertions; invariants; mechanical verification; F.3.1 [Logics
and Meanings of Programs]: Semantics of Programming
Languages—Program analysis

General Terms
Algorithms, Theory, verification

Keywords
Abstract interpretation, static analysis, binary code, control
flow recovery, refinement, SAT solving

1. INTRODUCTION
Ideally, verification and validation of embedded software
are applied to the executable binary code of a program
because the semantics of each instruction is fully specified
on this level. This contrasts with high-level programming
languages such as C, and thus, promises to provide more
trustworthy results [2, 16, 29]. In practice, however, binary
code analysis presents severe challenges to overcome so as
to make an analysis feasible for practical applications, one

of which is indirect control flow. Indirect control poses a
so-called chicken-and-egg problem [5, 6, 22, 32]: In order to
reconstruct the control flow graph from binary code, it is
necessary to infer invariants that describe those registers
which affect the target of an indirect jump/call. A control
flow graph is, in turn, required to compute these invariants.

1.1 The Drive for Control Flow Recovery
In presence of indirect control, e.g., implemented using in-
direct jump instructions, the lack of a precise control flow
graph often implies a drastic loss in terms of precision for
any subsequent verification effort. We discuss the loss of
precision incurred by spurious jump targets using an example.
Consider the following macro written in C:

#define SWPC(a, b) (aˆ=b,bˆ=a,aˆ=b,a&=0xf,b&=0xf)

The macro swaps the contents of two different variables a
and b without involving a third, based on three consecutive
exclusive-or operations. Indeed, this is a well-known idiom in
low-level programming [35]. In addition, the last two opera-
tions clear the upper nibbles of the results. The left-hand side
of Fig. 1 shows a semantically equivalent assembly snippet
after compilation for the (accumulator-based) Intel MCS-51
architecture. The compiler locates the first instruction of the
macro at address 0x100 in program memory. Now assume
the SWPC macro is used within a switch-case statement, say:

switch (p) {

case 10: SWPC(x, y); break;

case 20: foo(x, y); break;

default: bar(x, y);

}

For efficiency, the switch-case is compiled into a jump table,
which is stored in program memory. The application looks
up a comparison value and the corresponding jump target
pc′ from program memory. These two values constitute a
single entry in the jump table. Address pc′ indicates the
first instruction that belongs to the respective case block. If
the comparison matches, control is redirected to pc′ using
an indirect jump. In the above example, the jump table
consists of the comparison values 10, 20, and #default with
the corresponding jump targets: 0x100 for the implementa-
tion of SWPC and the entry addresses of functions foo() and
bar(). Suppose an analysis infers a range δ = [0x100, 0x105]
for the indirect jump targets pc′ related to SWPC by abstract
interpretation [14] using intervals [11,28]. On architectures
supporting instructions of variable length (typically CISC),
edges need to be added to the CFG at the granularity of the

E5

0x100

05

0x101

65

0x102

25

0x103

62

0x104

25

0x105

F5

0x106

05

0x107

53

0x108

25

0x109

0F

0x10a

53

0x10b

05

0x10c

0F

0x10d

MOV A ←[0x05
XRL A,0x25

XRL 0x25,A

XRL A,0x25

MOV 0x05 ←[A
ANL 0x25,#0x0F

ANL 0x05,#0x0F

INC 0x65

ADD A,0x62

ADD A,0x65

ADD A,0xF5

INC 0x53

ADD A,0x0F

ANL 0x05,#0x0F

XRL A,0x25

XRL 0x25,A

XRL A,0x25

MOV 0x05 ← [A
ANL 0x25,#0x0F

ANL 0x05,#0x0F

ADD A,0x62

ADD A,0x65

ADD A,0xF5

INC 0x53

ADD A,0x0F

ANL 0x05,#0x0F

XRL 0x25,A

XRL A,0x25

MOV 0x05 ← [A
ANL 0x25,#0x0F

ANL 0x05,#0x0F

ADD A,0x65

ADD A,0xF5

INC 0x53

ADD A,0x0F

ANL 0x05,#0x0F

X × × × × ×

Prog. memory disassembly:

SWPC macro Junk code

abstracted jump targets [0x100, 0x105]

Figure 1: Approximation of indirect jump targets using intervals

shortest possible instruction-length. For the Intel MCS-51,
this is byte-level granularity [19]. The drive for soundness
forces us to add edges from the indirect jump to all concretiza-
tions of δ, i.e., 0x100, . . . , 0x105, The first value 0x100 points
to the SWPC macro. Not surprisingly, the next address 0x101
also leads to a valid instruction. The instruction MOV A
← [0x05, e.g., is represented by a two-byte opcode 0xE505
on the binary level. Likewise, the succeeding instruction
XRL A, 0x25 is represented by the opcode 0x6525. Yet, the
second byte of MOV A ← [0x05 and the first byte of XRL A,
0x25 form another valid opcode, i.e., 0x0565 that represents
the instruction INC 0x65, which increments memory location
0x65. Indeed, the addresses 0x102, 0x103, 0x104, and 0x105
all indicate valid sequences of instructions (cf. Fig 1).

We call such fragments in the executable junk code as it is
based on opcodes that are never executed, but only form
part of the program semantics due to over-approximation.
Subsequent analyses will therefore calculate invariants based
on junk code as well. This, leads to a considerable loss of
precision (also referred to as unbearable noise propagation [5,
Sect. 1]), possibly yielding more spurious warnings. The
situation is even worse if the junk code coincides with the
opcodes of indirect or (un-)conditional jumps, which induces
further control flow, though this is not the case in the above
example. Albeit the derived interval appears to be tight at a
first glance (its boundaries coincide with the jump targets),
the imprecision due to the choice of intervals may lead to
significant loss of analysis precision. This may render any
verification efforts useless. Yet, indirect control is ubiquitous
in compiler-generated as well as in handcrafted assembly
code. Apart from switch-case statements, compilers generate
indirect jumps/calls for function pointers or virtual methods.
A more subtle point is given for return statements which
alter the program counter according to a value that has been
stored on the runtime stack. In some situations, compilers
intentionally alter the runtime stack, e.g., when evaluating
jump tables. Such code exhibits much similarity with code
that exploits possibilities for buffer overruns. It is thus hardly
possible to overestimate the value of precise invariants for
such kind of program properties, thereby providing a means
to distinguish harmless from harmful code.

1.2 Challenges in Control Flow Recovery
The problem of soundly analyzing indirect call and jump
targets in real-world binary code is actually even more devi-
ous than discussed so far because of the presence of indirect
stores. Such instructions store the contents of one register
at a memory location indicated by another register. Observe
that not only explicit usage of indirect store operations ex-
hibits such behavior, but also PUSH instructions as well as
direct calls, which automatically store the return address
on the stack. Any indirect store operation thus needs to
be handled properly. A further difficulty is the presence
of bit-wise (logical) instructions in low-level code, and the
frequent integration of overflowing behavior in the semantics
of the program. For example, to compute a 16-bit addition
on an 8-bit microcontroller architecture, compilers typically
use an 8-bit addition followed by an 8-bit addition with carry.
The remainder of this paper discusses an algorithm which
performs alternating runs of forward and backward analy-
sis [3] using SAT solving and integrates approaches to handle
the challenges mentioned thus far. Basing the analysis on
SAT solving allows to express the semantics of the analyzed
programs relationally, thereby allowing the same represen-
tation to be used for both forward and backward analysis,
which eases the efforts for implementing the technique.

1.3 Contributions
To summarize our work, the paper contributes a fully au-
tomatic algorithm for SAT-based control flow reconstruc-
tion. The technique itself only requires an encoding of the
instruction-set semantics of the target hardware in proposi-
tional Boolean logic [9]. Based on these encodings, forward
and backward value-set analyses can straightforwardly be
implemented using existential quantification. This operation
can, in turn, efficiently be implemented using SAT solv-
ing [10,24]. By resting the analysis on a relational semantics
of the instruction set, forward and backward analyses can be
executed in a uniform fashion. The algorithm itself exhibits
two interesting properties: (1) it is sound in the sense that it
does not miss any edges in the CFG, and (2) it turns out to
be precise for many examples of typical microcontroller pro-
grams. Further, the algorithm itself is fully generic, although
we demonstrate it for the Intel MCS-51 architecture.

1.4 Structure of the Paper
We present the technical steps for a single basic block in
Sect. 2, and then lift the approach to program-level fixed-
point iteration in Sect. 3. Afterwards, Sect. 4 presents exper-
imental evidence, before the paper concludes with a survey
of related work in Sect. 5 and a discussion in Sect. 6.

2. BLOCK ABSTRACTION
In the following, we discuss the ingredients of our technique
using an example. We first show how to derive tight invari-
ants in terms of pre- and postconditions over value sets for
a single basic block in the program. Afterwards, we lift the
techniques described to entire programs in Sect. 3.

To simplify presentation, we first illustrate the approach for a
basic block of assembly code, which corresponds to the SWPC
macro introduced in Sect. 1. In general, a basic block b is a
straight sequence of instructions with a single entry point and
a single exit point. In the following we denote the basic block
for the SWPC macro with bSWPC. Our technique proceeds
with representing the concrete semantics of bSWPC using a
propositional Boolean formula, which is composed from the
instruction-level encodings of all involved instructions. This
technique, which has become a standard technique in software
verification due to bounded model checkers [7], is colloquially
referred to as bit-blasting [8, 13,23].

2.1 Bit-Blasting Blocks
As an example, consider the exclusive-or operations of the
SWPC macro, e.g., XRL A, B, where A and B are some
registers. This instruction computes the bit-wise exclusive-or
of registers A and B and stores the result in A. To express
the semantics of the instruction relationally, introduce bit-
vectors a and b to represent the values of A and B at the
entry of the block. Likewise, we introduce a bit-vector a′ to
represent the value of A on exit (recall that B is not altered).
In what follows, let v[i] denote the ith bit of a bit-vector v.
The semantics of XRL A, B is then expressed using a Boolean
formula as follows:

[XRL A,B] :=
∧n−1
i=0 (a′[i]↔ a[i]⊕ b[i])

The force of such relational encodings is that they can be
used to reason about program executions in both forward
and backward direction (or even mixed). This means, given
some values of a′ on exit, it is straightforwardly possible to
obtain potential values of a and b on entry. Similarly, given
a value of, e.g., a on entry, it is also possible to infer suitable
combinations of values of b and a′. As another example, the
increment INC C found in the junk code in Fig. 1 can be
encoded over bit-vectors c and c′ as:

[INC C] :=
∧n−1
i=0

(
c′[i]↔ c[i]⊕

∧i−1
j=0 c[j]

)
Similar encodings can be derived for the entire instruction set
of microcontrollers as discussed in [9]. In the following, we
denote the encoding of an instruction i by encode(i). We can
simply extend the propositional encoding of single instruc-
tions to entire basic blocks by first performing static single
assignment conversion [15] (to avoid accidental coupling if a
register is accessed more than once in the respective block).
Thus, for a given block b, we construct a basic block formula
φb as a conjunction over the propositional encodings of the

instructions in b:

φb =
∧lst(b)
i=fst(b) encode(i)

Here, the entry and exit of a block are denoted fst(b) and
lst(b), respectively. The formula for bSWPC thus consists of
seven conjuncts, each of which encodes a single instruction.
However, passing φb to a SAT solver necessitates converting
φb into conjunctive normal form (CNF) first. This is done
using Tseitin conversion [26,34], which introduces fresh, ex-
istentially quantified variables T to obtain an equisatisfiable
formula in CNF. We therefore denote the formula in CNF
by φb(T). Introducing fresh variables ensures that the size
of φb(T) in CNF is only a linear multiple of the size of φb.

2.2 Value-Set Abstraction
We apply value-set abstraction following the approach of
Barrett and King [6, Sect. 3] to compute the unsigned values
a register can take subject to a Boolean formula such as
φb(T). The key idea of their algorithm is to use alternating
runs of over- and under-approximation so as to converge onto
a set of values for a pre-specified register. In the following,
let 〈〈v〉〉 =

∑7
i=0 2i · v[i] denote the unsigned integer value

of a bit-vector v. Further, let vars(φb(T)) denote the set of
propositional variables used in φb(T). To compute the value-
sets of a bit-vector v ∈ vars(φb), however, it is necessary to
eliminate all variables in vars(φb(T)) \ {v} from φb(T) using
existential projection. To do so, we apply the SAT-based
projection scheme of Brauer et al. [10], who showed how to
perform existential quantifier elimination for propositional
Boolean formulae using incremental SAT solving. Denote
the function, which projects φb(T) onto v, by projv(φb(T)).
The result of this operation is a formula in CNF. Further,
observe that vars(projv(φb(T))) = {v}.

To illustrate, consider again the macro SWPC from the in-
troduction. The inputs of the block are the bit-vectors
V in = {r0x05, r0x25} since the output of the block only de-
pends on the values of memory locations 0x05 and 0x25 on
entry. Likewise, the outputs are V out = {r0x05, r0x25, rA}.
Then, to determine the value set of one of the registers
v ∈ V in ∪ V out, we compute projv(ϕb(T)) and apply the
algorithm of Barrett and King. The key ingredient of our
algorithm is to derive preconditions on the bit-vectors in V in

and post-conditions on the variables in V out for blocks using
incremental SAT solving. After each iteration, the formula
φb(T) is strengthened by adding a constraint that encodes
the pre- and postconditions, respectively, before eliminat-
ing existential quantifiers. Using this technique, our analysis
eventually converges onto a tight approximation of the actual
value sets of registers.

2.3 Deriving Pre- and Postconditions
To encode pre- and postconditions in φb(T), we augment
φb(T) with a propositional formulae ψpre(V in) or ψpost(V out),
respectively, which encodes the constraints imposed onto
φb(T). Then, φb(T) ∧ ψpre(V in) describes the semantics
of the block b subject to the precondition ψpre(V in). For
example, if an analysis infers that memory location 0x25 on
entry of b — corresponding to bit-vector r0x25 in the formula
φb(T) — can take the values in {0x80, 0x51}, we augment
the formula φb(T) with ψpre(V in) defined as:

ψpre(V in) = (〈〈r0x25〉〉 = 0x80) ∨ (〈〈r0x25〉〉 = 0x51)

A CNF representation of ψpre(V in) can be straightforwardly
derived as before by introducing fresh variables. Based on
these formal notions, we can define forward and backward
interpreters to derive value-set abstractions.

Forward Block-Wise Interpreter. We define a forward in-

terpreter
−→
F : Boolvars(φb(T)) × BoolV in → BoolV out , where

BoolX describes the class of Boolean formulae over variables
X. The forward interpreter determines a postcondition for a
formula φb(T) and a precondition ψpre(V in) (which is initially
true, i.e., it does not contain any constraints) as follows:

1. Let ξ = φb(T) ∧ ψpre(V in)).

2. For each vout ∈ V out:

(a) Eliminate all variables in vars(ξ) \ {vout} from ξ
using incremental SAT solving, denoted projvout

(ξ).

(b) Compute a value-set abstraction of projvout
(ξ),

which yields a set of values in the range 0, . . . , 255.

3. Store results as the postcondition ψpost(V out) of φb(T).

Backward Block-Wise Interpreter. In a spirit similar to

before, we define a backward interpreter
←−
B : Boolvars(φb(T))×

BoolV out → BoolV in . The backward interpreter determines
a Boolean precondition for a Boolean formula φb(T) and a
postcondition ψpost(V out) (which is initially true, too) as:

1. Let ξ = φb(T) ∧ ψpost(V out).

2. For each vin ∈ V in:

(a) Eliminate all variables in vars(ξ) \ {vin} from ξ
using incremental SAT solving, denoted projvin

(ξ).

(b) Compute a value-set abstraction of projvin
(ξ), which

yields a set of values in the range 0, . . . , 255.

3. Store results as the precondition ψpre(V in) of φb(T).

Example. To illustrate, assume a Boolean encoding of the
precondition ψSWPC

pre (V in) for bSWPC which defines 〈〈r0x05〉〉 ∈
{10, 20, 30} ∧ 〈〈r0x25〉〉 ∈ {50, 60, 70} on input. Computing
−→
F (φSWPC

b (T), ψSWPC
pre (V in)) yields the postcondition:

ψSWPC
post (V out) =

 〈〈r
′
A〉〉 ∈ {50, 60, 70} ∧

〈〈r′0x25〉〉 ∈ {4, 10, 14} ∧
〈〈r′0x05〉〉 ∈ {2, 6, 12}


We now apply the backward interpreter

←−
B to the postcon-

dition ψSWPC
post (V out) =

−→
F (φSWPC

b (T), ψSWPC
pre (V in)) to infer a

precondition for bSWPC in backward direction, which yields:

ψSWPC
pre (V in) =

 〈〈r0x05〉〉 ∈
{

4, 10, 14, 20, 26, . . . ,
234, 238, 244, 250, 254

}
∧

〈〈r0x25〉〉 ∈
{

50, 60, 70
}


However, note that applying

←−
B only leads to a coarse over-

approximation of the initial precondition 〈〈r0x05〉〉 ∈ {10, 20, 30}.

This is a consequence of the fact that some instructions are
not invertible, e.g., the instruction ANL 0x05,#0xF in bSWPC.

3. PROGRAM-LEVEL ABSTRACTION
The previous section has discussed the technical steps for com-
puting abstractions of a single block in forward or backward
direction. Most notably, these are bit-blasting, existential
quantifier elimination, and value-set abstraction. This sec-
tion extends the techniques described so far to perform a
whole-program analysis using alternating forward and back-
ward abstract interpretation. We discuss the algorithm for
whole-program analysis using the example presented in Fig. 2.
The code fragment in Fig. 2 (middle) displays a typical use of
indirect control flow in embedded software. An array of func-
tion pointers is stored in a table within the program memory
of the microcontroller. The functions are then indexed (after
some compiler optimizations) using the parameter keyCode,
which is passed to function keypress().

The results of the analysis are value sets for all registers. This
includes, most notably, the two 8-bit data pointer registers
DPL and DPH, which are concatenated to form a 16-bit
register DP on the Intel MCS-51. Together with an additive
offset stored in the accumulator A, register DP indicates the
jump targets (cf. instruction 0x106 in Fig. 2). The value-sets
of these three registers are then used to extend the control
flow graph of the program.

3.1 Preprocessing
In the first step, the program file is disassembled (in a sweep
linear fashion) until an iJMP instruction is discovered. Then,
the disassembler stops, and a control flow graph is extracted
from the program fragment available thus far. A basic block
representation of the program is then extracted from the
control flow graph and each block is bit-blasted separately.

3.2 Worked Example
The annotated CFG in Fig. 2 shows the resulting binary
code after compilation for the Intel MCS-51 microcontroller
using the Keil µVision 3 v3.23 compiler. Basic block b0x03
implements the comparison keyCode ≥ N HANDL using a
subtract instruction SUBB A, #N HANDL. The comparison
evaluates to true if the subtraction does not underflow, which
is indicated by the carry flag. For the true branch, the
SUBB instruction clears the carry flag c and control flow
is redirected to b0x0C. The constant value #C FAIL is then
stored in register r0x07 as the return value.

However, if the comparison evaluates to false, then SUBB
underflows, sets the carry flag c, and passes control flow to
b0x0F. The basic block b0x0F and its successors first calculate
an offset for indexing the jump table pf. Subsequently, these
blocks read the corresponding entries from the table, assign it
to the data pointer DP, prepare the accumulator A and finally
invoke the indirect jump iJMP @(A+DP) with the parameters
read from program memory. In a concrete execution of the
program the value of the carry flag is immediately known
and determines the succeeding block. To illustrate, suppose
that b0x03 is entered with a precondition r0x07 = 20. This
register corresponds to the case where keyCode = 20. Then,
SUBB A, #N HANDL will determine a value of 14 for the
accumulator after performing the subtraction, the carry flag

is cleared, and b0x0C is processed next. It follows that b0x0C
has a concrete input state 〈〈r′A〉〉 = 14 ∧ 〈〈c〉〉 = 0, and
the function keypress() returns without invoking any event
handler.

3.3 Forward Interpretation
In an abstract interpretation setting, however, we perform
over-approximations of possible computations of the binary
code under investigation. Concrete data types are mapped
to abstract domains, i.e., non-relational value sets in our
setting. Suppose the abstract interpreter enters the basic
block b0x03 with the following precondition:

ψb0x03pre (V in) =

{
〈〈r0x07〉〉 ∈ {1, 2, 3, 101, 102, 103} ∧
〈〈c〉〉 ∈ {false}

}
Applying the forward interpreter

−→
F to compute the postcon-

dition of φb0x03(T) subject to ψb0x03pre (V in), we obtain:

ψb0x03post (V out) =

 〈〈r
′
A〉〉 ∈ {251− 253, 95− 97} ∧

〈〈r′0x08〉〉 ∈ {1− 3, 101− 103} ∧
〈〈c′〉〉 ∈ {true, false}


Observe that ψb0x03pre (V in) contains valuations of r0x07 that
either fail (c′ = false) or pass (c′ = true) in the comparison.

To compute a fixed point, ψb0x03post (V out) is now propagated to
both successor blocks of b0x03, i.e., b0x0C and b0x0F. While the
propagated postcondition ψb0x03post (V out) does not drastically
impact analysis precision for b0x0C, it has a major impact on
the jump targets reconstructed in the other branch. Neither
of the values {101, 102, 103} for 〈〈r0x07〉〉 can reach b0x0F in a
concrete execution since they would cause the comparison
in b0x03 to hold (SUBB clears c) and control flow would not
reach b0x0F.

The effects of applying the forward interpreter
−→
F on program-

level are shown in the upper part of Fig. 2. Applying
−→
F yields

an approximation {hdr2(), hdr3(), hdr4()} of the actual jump
targets. Yet, forward interpretation also yields three spurious
jump targets, denoted ? in the figure. This imprecision
stems from the block b0x0F, which calculates starting address
of the corresponding entry in the jump table. The value
set {101, 102, 103} for 〈〈r0x08〉〉 on entry yields additional
values {85, 88, 91} for DPL in b0x0F. Reading from this code
addresses in b0x38 yields the specific byte in program memory,
which depends on the remaining code of the program. This
byte may thus hold an arbitrary value.

3.4 Invariant Refinement
To obtain tighter invariants, the results from forward inter-
pretation are refined by interleaving forward and backward
interpretation at conditional branching edges. Making use
of the semantics of the conditional jump instruction, the
outgoing edges of the respective block are labeled with the
constraints from the conditional jump. To illustrate, we
label the outgoing edges of b0x03 with the constraints on the
carry flag c in Fig. 2. The edge b0x03 b0x0F is thus labeled
with c = true, whereas the edge b0x03 b0x0C is labeled with
c = false. From now on, given a set of edges E, we formalize
edge labels by a map κ : E → BoolV in∪V out . Additionally, let
pred(b) and succ(b) denote the set of immediate predecessors
and successors of a block b, respectively.

The key idea of our algorithm is to use a form of depth-
bounded backtracking, where the maximum depth is given
by an unsigned integer k. To illustrate, assume that back-
tracking is performed starting from block b0x106. Then, a
backtracking depth of k = 3 implies that the analysis back-
tracks along 3 predecessor blocks, i.e., it visits the blocks
b0x100, b0x038, and b0x00F. The edges in the control flow graph
succeeding conditional branching instructions are initialized
with the constraints imposed by the respective instruction.
Any other edge is labeled with the constraint true.

3.4.1 Algorithm
The analysis begins with a forward analysis of the program
(1 and 2a). If an outgoing edge of the currently processed
block contains a constraint, bounded backtracking is trig-
gered (2b). To control the backtracking, we introduce an
auxiliary variable i to monitor the current backtracking depth.
Backtracking then starts by propagating the refined precon-
dition of a successor block bsucc into b, where it is used as
the postcondition so as to constrain the semantics of block
b (3). This step is repeated k times. The refined value sets
on input of the kth predecessor are then used as the inputs
for a forward analysis (4), the outcome of which is a refined
value set on input of bsucc (5).

1. Apply
−→
F to the initial block b in order to derive a

postcondition ψpost(V out) =
−→
F (φb(T), ψbpre(V in))

2. For each bsucc ∈ succ(b)

(a) If the edge does not impose any constraints, i.e.,
κ(b bsucc) = true, then join the precondition
ψsucc
pre (V in) of bsucc with the postcondition ψpost(V out)

of b; repeat step 2 with the next successor

(b) If κ(b bsucc) 6= true, continue with backtracking
at step 3 and set i = k

3. Backtracking

(a) Rename the constraint κ(b bsucc) over variables
in V in to range over variables in V out; denote the
resulting constraint by σ and put ξ = φb(T) ∧ σ

(b) Apply
←−
B to b, derive η(V in) =

←−
B (ξ, ψbpost(V out))

(c) The precondition of b is then refined by computing
ψ′bpre(V in) = ψbpre(V in) u η(V in), where u denotes
the intersection of value sets

(d) Decrement i. If i is positive and |pred(b)| = 1,
then repeat step 3 for pred(b); otherwise continue
with step 4

4. Forward Refinement

(a) Derive ψ′bpost(V out) =
−→
F (φb(T), ψ′bpre(V in))

(b) Increment i. If i < k then set b to succ(b) and
repeat step 4, otherwise continue at step 5

5. Join refined precondition

(a) Rename ψ′bpost(V out), which ranges over output vari-
ables V out so that it ranges over inputs V in; denote
the formula by σ′.

(b) Set ψsucc
pre (V in) = σ′ t ψsucc

pre (V in)

(c) Continue with next successor in step 2

only
−→
F

interleaved
−→
F+
←−
B

Prog.Cntr Mark High Low Func
C:0x26 (38) 0xFF 0x00 0x64 hdr1()
C:0x29 (41) 0xFF 0x00 0x69 hdr2()
C:0x2C (44) 0xFF 0x00 0x6E hdr3()
C:0x2F (47) 0xFF 0x00 0x73 hdr4()
C:0x32 (50) 0xFF 0x00 0x78 hdr5()
C:0x35 (53) 0xFF 0x00 0x7D hdr6()

#define N HANDL = 6;
const UINT8 (*const code pf[])(void) = {

hdr1, hdr2, hdr3, hdr4, hdr5, hdr6}

UINT8 keypress(UINT8 keyCode){
if (keyCode >= N HANDL){

return C FAIL;
}
return (*pf[keyCode]);

}

{r7 : 1− 3, 101− 103}
{flags : C := false}

MOV 0x08 ←[R7

MOV A ←[0x08

CLR A
SUBB A, #N HANDL

JC C:0x00F

{r8 : 1− 3, 101− 103}
{rA : 251− 253, 95− 97}
{flags : C := true, false}

[0
x0

0
3

]

{rA : 251− 253, 95− 97}
{flags : C := false}
MOV R7 ←[#C FAIL

RET

{r7 : #C FAIL}

[0
x0

0
C

]

{r0x08 : 1− 3, 101− 103}
{flags : C := true}

MOV R7 ←[0x08

MOV A ← [R7
MOV B ←[#0x03

MUL AB
ADD A, #0x26

MOV DPL ← [A
CLR A

ADDC A, #0x00

MOV DPH ← [A
AJMP C:0x038

{rdph : 0}
{rdpl : 41, 44, 47, 85, 88, 91}

[0
x0

0
F

]

{rdph : 0}
{rdpl : 41, 44, 47, 85, 88, 91}

CLR A
MOVC A ←[@(A+DP)

MOV R3 ← [A
MOV A ←[#0x01

MOVC A ← [@(A+DP)

MOV R2 ← [A
MOV A ←[#0x02

MOVC ←[@(A+DP)

MOV R1 ← [A
AJMP C:0x100

{r3 : 255, ?, ?, ?}
{r2 : 0, ?, ?, ?}

{r1 : 105, 110, 115, ?, ?, ?}

[0
x0

3
8

]

{r2 : 0, ?, ?, ?}
{r1 : 105, 110, 115, ?, ?, ?}

MOV DPH ← [R2

MOV DPL ← [R1

CLR A

{rdph : 0, ?, ?, ?}
{rdpl : 105, 110, 115, ?, ?, ?}

{rA : 0}

[0
x1

0
0

]

{rdph : 0, ?, ?, ?}
{rdpl : 105, 110, 115, ?, ?, ?}

{rA : 0}
iJMP @ (A+DP)

[0
x1

0
6

]

abstracted jump targets

hdr2()X,hdr3()X,hdr4()X, and 3×?

c := 0

c := 1

{r7 : 1− 3, 101− 103}
{flags : C := false}

MOV 0x08 ←[R7

MOV A ←[0x08

CLR A
SUBB A, #N HANDL

JC C:0x00F

{r8 : 1− 3, 101− 103}
{rA : 251− 253, 95− 97}
{flags : C := true, false}

[0
x0

0
3

]

{rA : 95− 97}
{flags : C := false}
MOV R7 ← [#C FAIL

RET

{r7 : #C FAIL}

[0
x0

0
C

]

{r0x08 : 1− 3}
{flags : C := true}

MOV R7 ←[0x08

MOV A ←[R7
MOV B ←[#0x03

MUL AB
ADD A, #0x26

MOV DPL ←[A
CLR A

ADDC A, #0x00

MOV DPH ←[A
AJMP C:0x038

{rdph : 0}
{rdpl : 41, 44, 47}

[0
x0

0
F

]

{rdph : 0}
{rdpl : 41, 44, 47}

CLR A
MOVC A ← [@(A+DP)

MOV R3 ←[A
MOV A ←[#0x01

MOVC A ← [@(A+DP)

MOV R2 ←[A
MOV A ←[#0x02

MOVC ← [@(A+DP)

MOV R1 ←[A
AJMP C:0x100

{r3 : 255}
{r2 : 0}

{r1 : 105, 110, 115}

[0
x0

3
8

]

{r2 : 0}
{r1 : 105, 110, 115}
MOV DPH ← [R2

MOV DPL ← [R1

CLR A

{rdph : 0}
{rdpl : 105, 110, 115}

{rA : 0}

[0
x1

0
0

]

{rdph : 0}
{rdpl : 105, 110, 115}

{rA : 0}
iJMP @ (A+DP)

[0
x1

0
6

]

abstracted jump targets

hdr2()X,hdr3()X,hdr4()X

c := 0

c := 1

Figure 2: Forward (top) and interleaved forward-backward (bottom) interpretation

3.4.2 Refinement for Branching by Example
The bottom part of Fig. 2 shows the results of the algorithm
with backtracking depth k = 1. This section discusses how
the algorithm proceeds to resolve the conditional branching
instruction JC C:0x00F, which passes to control to either
location 0x00C or 0x00F, depending on the value of the carry
flag. To do so, it first computes a postcondition ψb0x03post (V out)
for b0x03 in forward direction in step (1). This yields the same
result as before, namely:

ψb0x003post (V out) =

 〈〈r
′
A〉〉 ∈ {251− 253, 95− 97} ∧

〈〈r′0x08〉〉 ∈ {1− 3, 101− 103} ∧
〈〈c′〉〉 ∈ {true, false}


Then succ(b0x003) = {b0x00C, b0x00F}. Suppose the analysis pro-
ceeds with the successor b0x00F in step (2) and determines
the edge constraint c = true, thus step (2b) applies. The
algorithm then sets i = 1, and generates a restricted Boolean
transformer ξ = φb0x003(T) ∧ σ in step (3a). Renaming is ap-
plied so that the constraint κ(b0x003 b0x00F) ranges over the
outputs of b0x003 rather than the inputs of b0x00F. Backtrack-

ing starts by applying
←−
B to ξ and ψb0x003post (V out) in step (3b),

and step (3c) yields a refined precondition:

ψ′b0x003pre (V in) =

{
〈〈r0x07〉〉 ∈ {1, 2, 3} ∧
〈〈c〉〉 ∈ {false}

}
Then, i is decremented to give i = 0 in step (3d). Since
pred(b) = ∅, the algorithm jumps to step (4) and applies the
forward interpreter to the refined precondition of b0x003. This
yields a postcondition of b0x003 defined as follows:

ψ′b0x003
post (V out) =

 〈〈r
′
A〉〉 ∈ {251, 252, 253} ∧

〈〈r′
0x08〉〉 ∈ {1, 2, 3} ∧

〈〈c′〉〉 ∈ {true}


Incrementing i to 1 fails the test i < k in step (4b), we thus
proceed with step (5) and use the refined postcondition as
precondition for the successor block by applying renaming in
step (5a). Then, forward interpretation based on these new
inputs gives a fresh, more precise precondition for b0x00F, i.e.:

ψ
b0x00F
pre (V in) =

{
〈〈r0x08〉〉 ∈ {1, 2, 3} ∧
〈〈c〉〉 ∈ {true}

}
It is important to appreciate that, due to the refinement, the
valuations in r7 were narrowed from {1, 2, 3, 101, 102, 103} to
{1, 2, 3}. This refined value set coincides with those values
that reach b0x0F in a concrete execution of the program since
the block b0x08 does not mutate this register. Finally, the al-
gorithm continues with the false successor b0x0C ∈ succ(b0x003)
in step (2). Eventually, the algorithm refines the value set of
r7 on entry of b0x00C to {101, 102, 103}.

To identify the jump targets of the instruction at address
0x106 exactly, it is then necessary to propagate the refined
precondition of block b0x00F forward. This is necessary to
compute the value of the data pointer register DP in the block
b0x038, where it is used twice to read a value from program
memory. This is implemented using the MOVC instructions,
which read the value located at address A+DP in program
memory and store it in the accumulator A. Both values are
then stored in registers R1 and R2, respectively. Block b0x100
copies the values of R1 and R2 into the data pointer register
DP and clears the accumulator. Finally, block b0x106 uses DP
to execute an indirect jump. Forward analysis computes the

precondition

ψb0x106pre (V in) =

 〈〈rDPL〉〉 ∈ {105, 110, 115} ∧
〈〈rDPH〉〉 ∈ {0} ∧
〈〈rA〉〉 ∈ {0} ∧


exactly, as desired. The three values 105, 110, and 115
indicate the addresses of the respective event handlers stored
in the array pf of function pointers. Further, observe that
the analysis thus infers that the functions hdr1, hdr5, and
hdr6 are unreachable due to the precondition of the program
which states that register r7 only contains values drawn from
the set {1, 2, 3, 101, 102, 103}. For r7 ∈ {1, 2, 3}, the functions
hdr2, hdr3, and hdr4 are called, whereas keypress() returns for
r7 ∈ {101, 102, 103}. Finally, the program is disassembled
again, this time also following the computed jump targets.

3.4.3 Optimizing for Indirect Reads
The previous section has demonstrated how the algorithm
uses forward and backward analysis so as to resolve value
sets after conditional branching instructions, which is crucial
to discover the values of the data pointer DP in the indirect
jump. A different problem is to resolve jump tables, though
our algorithm handles this situation analogously. This section
demonstrates this for the jump table generated for the switch-
case statement from the introduction, shown in Fig. 3. A
basic block bcmp compares the control variable, which is stored
in register R7, with the comparison value p from the jump
table. The instruction MOV A←[@(A+DP) fetches this value
from program memory and stores it in the accumulator A.
This means that the jump table is indirectly addressed by
the data pointer. If the comparison matches, subsequent
elements in the same row of the table are addressed by
some additive offset on the accumulator. However, if the
comparison fails, the data pointer is incremented twice in the
next block so as to point to the next comparison value. The
comparison starts again for the next case branch. Otherwise,
the entry address of the corresponding case branch is loaded
in the pre block and the indirect jump is executed.

Forward and backward interpretation of the block bcmp thus
involves reasoning about the statement MOVC A←[@(A+DP),
which performs an indirect read. For example, in the refine-

ment step for the true successor we apply
←−
B to bcmp to obtain

a precondition that causes the accumulator to hold the value
0 after execution of bcmp. The effects of MOVC A←[@(A+DP)
thus need to be modeled. This could be encoded in the SAT
instance by modeling the indirect read as a conditional read.
Yet, this would cause the formula to explode in size. We
therefore deviate from this approach and separate bcmp into
three blocks so as to handle the MOVC instruction outside
the SAT solver, as a single atomic block.

We thus divide bcmp into three blocks ba, bb, and bc (cf. right-

hand side of Fig. 3). Applying
−→
F to bb simplifies the process

of collecting all bytes in memory which can be accessed

subject to ψ
bb
pre(V in). Afterwards, we apply

←−
B to bb, which

yields combinations of the DP and A that yield a fixed value
for A on output of the block. We then only propagate
the feasible combinations of DP and A to the successor
bc. We apply the same strategy for division DIV A,B and
multiplication MUL A,B that are known to yield hard SAT
instances.

addr p target
C:0x0A 0x10 0x100
C:0x0C 0x20 0x200
C:0x0E 0x00 0x300

{. . . }
MOV A ← [#00

MOVC A ←[@(A+DP)

XRL A, R7

JZ

{. . . }

[c
m

p
]

MOV A ←[#01[a
]

MOVC A ← [@(A+DP)⇒ [b
]

XRL A, R7

JZ[c
]

. . .

cmp next p

. . .[n
ex

t]

. . .

prepare iJmp

. . .

[p
re

]

A! = 0A = 0

Figure 3: Data pointer refinement

4. EXPERIMENTS
We have integrated the analysis described in this paper into
the [mc]square framework [31], which is written in Java.
For SAT solving, we used Sat4J [25]. All experiments were
performed on a Intel Core i5 CPU equipped with 4 GB
of RAM. To evaluate the precision of our technique, we
have applied it to two different sets of benchmarks for the
Intel MCS-51. We have conducted the experiments with the
expressed aim of answering the following two questions: (i)
Is the runtime tractable on non-trivial examples? (ii) How
precisely are indirect jump targets recovered?

To show that our approach does not depend on the compiler
used, we compiled all programs with both the Keil µVision
3 v3.23 and the Sdcc v3.0.0 compiler. All programs use
indirect control flow. The first benchmark set consists of em-
bedded C programs which implement the sample programs
in the tutorial Array of Pointers to Functions in the Em-
bedded Systems Programming magazine [20]. The programs
extensively use function pointers and pointer arithmetic.

Single Row Input The application reads data from a bidi-
rectional input port of the microcontroller, which is
connected to several push-buttons; each button is as-
sociated to a certain handler function. The starting
addresses of the handler functions are stored in an array
of function pointers within the program memory.

Keypad The application interfaces a 3× 3 keypad. When-
ever a key is pressed, the column and row number is
used to lookup the corresponding handler implementa-
tion in a two-dimensional function pointer array.

Communication Link The application handles requests
transmitted over a serial link (e.g., RS-232). Valid
command sequences are stored as a table in program
memory . A table-lookup together with pointer arith-
metics determine the index of a function pointer table
that holds the callback function to handle the request.

Task Scheduling The application implements a low-level
task scheduler. It operates on a data structure that
consists of an activation interval and a function pointer.
An array holds one such entry for each task in the
application (5 in the implementation). Whenever a
time tick is received, the application iterates over all

entries in the table and checks whether the interval in
the table matches the elapsed time. It then uses the
stored function pointer to indirectly branch to the task.

The second set of benchmarks consists of programs that
make use of non-trivial switch-case statements, another major
source of indirect control flow in practice.

Single Switch-Case An application where the control flow
of the program is controlled by a non-nested switch-
case statement with 18 distinct cases and one default
branch. A compact range of values to test causes the
compiler to optimize the switch-case statement into a
jump table. The structure of this benchmark is similar
to the motivating example in Fig. 1, yet it is more
complicated to analyze due to the larger jump table.

Emergency Stop The application implements the emer-
gency stop function block specified by the PLCopen
consortium, which has defined safety-related aspects
within the IEC 61131-3 development environment to
support developers of Programmable Logic Controllers.
The emergency stop function [27, pp. 40–45] monitors
an emergency stop button in an industrial setting.

Tab. 1 shows the experimental results for these benchmarks.
The sizes of the programs range from 52 to 180 instructions
overall. The table clearly shows that pure forward analysis
is insufficient for recovering jump targets precisely. Most
of the data pointer values from forward analysis point to
locations in program memory that are out of bounds, or that
do not contain any meaningful instruction. Yet, integrating
backward analysis with a small bound (k = 2) eliminates
the redundant jump targets for all except one benchmark
(Switch Case compiled using Sdcc v3.0.0). This imprecision
stems from the translation applied by the compiler. Here, the
jump target depends on the carry flag, which is propagated
through the program. Since our value set analysis is non-
relational, it fails to capture this behavior. The jump targets
are thus computed for both possible values of the carry flag,
thereby leading to twice the number of jump targets. It is
also interesting to note that in some situations combined
forward and backward analysis is cheaper than pure forward
analysis. This is because the value sets propagated around
the program tend to be much smaller. From our experience,
the runtimes can be further reduced by substituting Sat4J
using a more competitive SAT engine such as MiniSat (the
speed-up is often tenfold). Thus the timings given above are
very conservative; indeed Sat4J was chosen to maintain the
portability of [mc]square rather than for raw performance.

5. RELATED WORK
Albeit the problem of control flow reconstruction has recently
received increasing attention [5, 16, 18, 21, 22], it has been
studied for more than a decade already [32,33]. The approach
by De Sutter et al. [32] discuss control flow reconstruction
for the Digital Alpha architecture. In this paper, they use
so-called hell nodes, to which control is redirected if the jump
target cannot be resolved. In contrast to our approach, their
analysis starts with a conservative CFG which contains edges
to hell nodes whenever indirect control is found. During the

Binary Program
−→
F interpreter

−→
F +

←−
B interpreter

Name Compiler locC instrB JT RT FT Time RS k RT FT Time

Single row input
Keil

80
67

6
2401 2395 2.6 2 2 6 – 3.32

Sdcc 52 460 454 2.4 2 2 6 – 2.0

Keypad
Keil

113
113

9
3844 3835 3.49 4 2 9 – 4.33

Sdcc 80 1508 1499 3.08 4 2 9 – 2.57

Communication Link
Keil

111
164

8
6889 6881 4.56 2 2 8 – 4.37

Sdcc 118 84 76 3.38 2 2 8 – 4.29

Task Scheduler
Keil

81
105

5 >1000 >995 >5m
17 2 5 – 14.03

Sdcc 97 23 2 5 – 10.23

Switch Case
Keil

82
166

19
>5000 >4981 >5m 94 2 19 – 17.49

Sdcc 180 3304 3285 2.31 6 2 38 19 2.6

Emergency Stop
Keil

138
150

9
768 759 2.8 2 2 9 – 2.6

Sdcc 141 256 247 2.9 2 2 9 – 3.1

locC . . . Lines of C code
instrB . . . Number of assembly instructions
JT . . . Number of jump targets

RT . . . Number of recovered targets
FT . . . Number of recovered false targets
RS . . . Number of refinement steps applied
k . . . Backtracking depth
Time . . . Analysis time in seconds

Table 1: Experimental results for pure forward analysis as well as combined forward and backward analysis

analysis, they incrementally discover information that allows
to replace edges to hell nodes by edges to regular instructions.
Thus, their analysis proceeds diametrically opposed to ours.
In another early work, Theiling [33] includes knowledge about
the compiler and the target architecture in his analysis for
the TriCore and PowerPC architectures. He uses a bottom-
up analysis, which is in some sense similar to our strategy.
Cifuentes and Van Emmerik [12] described a technique for
discovering jump tables in binary code (for decompilation)
using a form of slicing and expression propagation. More re-
cently, Holsti [18] proposed to use partial evaluation of switch
tables to recover indirect jump targets. This approach, how-
ever, relies on knowledge about the compiler used so that
one can identify jump tables in program memory. By way
of comparison, our approach does not require such informa-
tion, but resolves pointers independently of the way they are
computed. Kinder et al. [22] have presented a formal frame-
work that incrementally builds a control flow graph from
binary code using interleaving runs of disassembly and in-
traprocedural abstract interpretation. They show that their
algorithm yields the most precise control flow graph that
can be recovered using the abstract domain employed. Since
they only use local propagation of memory values, their algo-
rithm, which was also implemented in the tool JakStab [21],
cannot properly resolve indirect function calls. Later, the
work of Kinder et al. was extended by Flexeder et al. [16] to
the interprocedural setting. Control flow reconstruction is
also performed by IdaPro [17], a tool that uses linear sweep
disassembly. This tool is based on several techniques such
as brute-force decoding of all addresses, pattern matching,
and so on. However, the control flow graph provided by
IdaPro is unsafe as shown in [4,21]. Just recently, Bardin
et al. [5] have tackled the problem using bounded value sets
(k-set propagation). They have observed that typically only
few constraints need to be tracked to resolve jump targets
precisely. Based on this observation, they have thus devel-
oped an algorithm that takes care of what they call precision
requirements. In this approach, refinement is used to control

the k-bounds, based on backward propagation of precision
requirements. A similar degree of locality in the analysis can
also be seen in our framework, with the key difference that
we adjust the backward propagation depth.

Note, though, that our algorithm is not bound to resolving
indirect jump targets. As a side-effect, it also resolves the
targets of indirect memory operations. Inferring the targets
of indirect stores is especially important for microcontroller
code since platforms such as the AVR series map registers,
such as the status register, into the same address space as
SRAM. Any indirect store operation may thus overwrite the
contents of, say, the global interrupt flag [11]. On platforms
such as the AVR, precision is even more important since the
status register is located in the memory location adjacent
to the address where the compiler places global variables,
which are frequently addressed indirectly. A key difference
of our method compared to that of others like Balakrishnan
et al. [1, 2] is that we infer concrete integer addresses, rather
than symbolic ones. This difference naturally manifests itself
in the design of the analyses and the domains used (cf. the
value-set abstract domain in [2]). The idea of using alter-
nating of forward and backward analysis is not new in itself.
For instance, Balakrishnan et al. [3] use this technique to
eliminate infeasible paths (called syntactic language refine-
ment). Though applied to a different field, the correctness
argument discussed in [3] also applies to our work. Mixed
forward and backward analysis was also used by Rival [30] for
counterexample generation using abstract interpretation.

6. CONCLUDING DISCUSSION
This paper argues that Boolean logic and SAT solving provide
a promising means to reason about rather intricate exam-
ples of binary code. In particular, it shows that alternating
executions of forward and backward analysis are useful to
soundly recover jump targets in the value-set abstract do-
main. Expressing the concrete semantics of a program in
the computational domain of propositional Boolean formulae

allows to define its semantics relationally. This dovetails with
our approach since the same encodings can thus be used for
forward as well as for backward analysis, thereby sidestep-
ping the difficulty of designing backward transformers [30].
Moreover, the approach benefits from the progress on state-
of-the-art SAT solvers, which can easily decide satisfiability
of structured problems involving thousands of variables and
clauses. Indeed, the problems we confront the solver with
can almost be seen as trivial by nowadays standards. We
have explained and presented the techniques in the context of
jump target recovery. Though this is a compelling problem,
it is important to appreciate that our methods are merely in-
dependent of it. They can, similar to the handling of indirect
reads in Sect. 3.4.3, also be used to model indirect stores.

7. REFERENCES
[1] G. Balakrishnan and T. W. Reps. Analyzing memory

accesses in x86 executables. In CC, pages 5–23, 2004.

[2] G. Balakrishnan and T. W. Reps. WYSINWYX: What
You See Is Not What You eXecute. ACM Trans.
Program. Lang. Syst., 32(6), 2010.

[3] G. Balakrishnan, S. Sankaranarayanan, F. Ivanc̆ić,
O. Wei, and A. Gupta. SLR: Path-sensitive analysis
through infeasible-path detection and syntactic
language refinement. In SAS, volume 5079 of LNCS,
pages 238–254. Springer, 2008.

[4] S. Bardin and P. Herrmann. OSMOSE: Automatic
structural testing of executables. Softw. Test., Verif. &
Reliab., 2009.

[5] S. Bardin, P. Herrmann, and F. Védrine.
Refinement-based CFG reconstruction from
unstructured programs. In VMCAI, volume 6538 of
LNCS, pages 54–69. Springer, 2011.

[6] E. Barrett and A. King. Range and set abstraction
using SAT. Electron. Notes Theor. Comput. Sci.,
267:17–27, October 2010.

[7] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and
Y. Zhu. Bounded model checking. Advances in
Computers, 58, 2003.

[8] J. Brauer and A. King. Automatic abstraction for
intervals using boolean formulae. In SAS, volume 6337
of LNCS, pages 167–183. Springer, 2010.

[9] J. Brauer, A. King, and S. Kowalewski. Range analysis
of microcontroller code using bit-level congruences. In
FMICS, volume 6371 of LNCS, pages 82–98. Springer,
2010.

[10] J. Brauer, A. King, and J. Kriener. Existential
quantification as incremental SAT. In CAV, 2011. To
appear.

[11] J. Brauer, T. Noll, and B. Schlich. Interval analysis of
microcontroller code using abstract interpretation of
hardware and software. In SCOPES. ACM, 2010.

[12] C. Cifuentes and M. Van Emmerik. Recovery of jump
table case statements from binary code. In IWPC,
pages 192–199. IEEE Computer Society, 1999.

[13] E. Clarke, D. Kroening, and F. Lerda. A tool for
checking ANSI-C programs. In TACAS, volume 2988 of
LNCS, pages 168–176. Springer, 2004.

[14] P. Cousot and R. Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In POPL,
1977.

[15] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and F. K. Zadeck. Effciently computing static single
assignment form and the control dependence graph.
ACM Trans. Program. Lang. Syst., pages 451–590,
1991.

[16] A. Flexeder, B. Mihaila, M. Petter, and H. Seidl.
Interprocedural control flow reconstruction. In APLAS,
volume 6461 of LNCS, pages 188–203. Springer, 2010.

[17] Hex-Rays SA. Idapro.
http://www.hex-rays.com/idapro/.

[18] N. Holsti. Analysing switch-case tables by partial
evaluation. In WCET, 2007.

[19] Intel Cooperation. MCS 51 Microcontroller Family
User’s Manual, 1994. Order No.: 272383-002.

[20] N. Jones. Arrays of pointers to functions. Embedded
Systems Programming Magazine, 05:46–56, May 1999.

[21] J. Kinder and H. Veith. Jakstab: A static analysis
platform of binaries. In CAV, volume 5123 of LNCS,
pages 423–427. Springer, 2008.

[22] J. Kinder, H. Veith, and F. Zuleger. An abstract
interpretation-based framework for control flow
reconstruction from binaries. In VMCAI, volume 5403
of LNCS, pages 214–228. Springer, 2009.

[23] D. Kroening and O. Strichman. Decision Procedures:
An Algorithmic Point of View. Springer, 2008.

[24] S. K. Lahiri, R. E. Bryant, and B. Cook. A Symbolic
Approach to Predicate Abstraction. In CAV, volume
2725 of LNCS, pages 141–153. Springer, 2003.

[25] D. Le Berre. SAT4J: Bringing the power of SAT
technology to the Java platform, 2010.
http://www.sat4j.org/.

[26] D. A. Plaisted and S. Greenbaum. A
structure-preserving clause form translation. Journal of
Symbolic Computation, 2(3):293–304, 1986.

[27] PLCopen. Safety software, technical specification,
part1: Concepts and function blocks. online, 2006.

[28] J. Regehr and A. Reid. HOIST: A system for
automatically deriving static analyzers for embedded
systems. ACM SIGOPS Operating Systems Review,
38(5):133–143, 2004.

[29] T. W. Reps, J. Lim, A. V. Thakur, G. Balakrishnan,
and A. Lal. There’s plenty of room at the bottom:
Analyzing and verifying machine code. In CAV, volume
6174 of LNCS, pages 41–56. Springer, 2010.

[30] X. Rival. Understanding the origin of alarms in Astrée.
In SAS, volume 3672 of LNCS, pages 303–319.
Springer, 2005.

[31] B. Schlich. Model checking of software for
microcontrollers. ACM Trans. Embedded Comput. Syst.,
9(4), 2010.

[32] B. D. Sutter, B. D. Bus, K. D. Bosschere,
P. Keyngnaert, and B. Demoen. On the static analysis
of indirect control transfers in binaries. In PDPTA,
2000.

[33] H. Theiling. Extracting safe and precise control flow
from binaries. In RTCSA, pages 23 –30, 2000.

[34] G. S. Tseitin. On the complexity of derivation in the
propositional calculus. In A. O. Slisenko, editor, Studies
in Constructive Mathematics and Mathematical Logic,
volume Part II, pages 115–125, 1968.

[35] H. S. Warren. Hacker’s Delight. Addison-Wesley, 2002.

http://www.hex-rays.com/idapro/
http://www.sat4j.org/

	Introduction
	The Drive for Control Flow Recovery
	Challenges in Control Flow Recovery
	Contributions
	Structure of the Paper

	Block Abstraction
	Bit-Blasting Blocks
	Value-Set Abstraction
	Deriving Pre- and Postconditions

	Program-Level Abstraction
	Preprocessing
	Worked Example
	Forward Interpretation
	Invariant Refinement
	Algorithm
	Refinement for Branching by Example
	Optimizing for Indirect Reads

	Experiments
	Related Work
	Concluding Discussion
	References

