For Theses and Open Positions please click here
Member | Position / Project |
Dr.-Ing. Bassam Alrifaee | Senior Researcher and Lecturer/ Head of Group |
Julius Beerwerth, M.Sc. RWTH | AUTOtech.agil, CPM Lab |
Ole-Christian Greß, M.Sc. RWTH | SOMC, CPM Lab |
Alexandru Kampmann, M.Sc. RWTH | UNICARagil, Localization, CPM Lab |
Maximilian Kloock, M.Sc. RWTH | AutoKnigge, CPM Lab |
Armin Mokhtarian, M.Sc. RWTH | UNICARagil, CPM Lab, CPM Remote |
Simon Schäfer, M.Sc. RWTH | SFB-TRR 339, HarMobi, CPM Lab |
Patrick Scheffe, M.Sc. RWTH | GROKO-Plan, CPM Lab |
See our CPM Lab website cpm.embedded.rwth-aachen.de
Follow us on
Our research in the field of Cyber-Physical Mobility focuses on the interdisciplinary intersection of control engineering, mathematical optimization, communications, embedded software, and perception. Our research interests include distributed decision-making and verification, service-oriented software architecture, machine learning, and their applications to networked and autonomous vehicles.
We conduct various projects in this research area funded by public organizations and industrial partners. The Cyber-Physical Mobility Lab is our group-wide project that makes our research results tangible, both for the scientific staff and students.
With our research, we contribute to the Future Mobility Center and to the The DFG Research Training Group mobilEM "Integrated Energy Supply Modules for Roadbound E-Mobility" . We thank mobilEM for providing a starting fund. We are also an active member of the Mobility & Transport Engineering profile area.
The DFG priority program CoInCar (Cooperative Interacting Automobiles) gathers an interdisciplinary group of researchers to develop a system-theoretical framework for cooperative traffic involving autonomous automobiles. The program promotes research on several topics including
We are working on two subprojects of the priority program, namely AutoKnigge and GROKO-Plan. Our subprojects belong to the first research area of cooperative maneuver and trajectory planning. In both subprojects, we focus on distributed decision-making and safety-verification of interacting vehicles while meeting real-time constraints of traffic.
The figure sketches distributed trajectory planning, where two vehicles communicate necessary data so that each vehicle can plan a collision-free trajectory. Major challenges of distributed trajectory planning are (I) the dependability of planned trajectories, (II) real-time compliance of the optimizer on board the vehicles, and (III) a realizable communication effort between vehicles. The first challenge arises since conflict-free trajectories are mandatory. The second challenge is due to high-dimensional non-convex optimization problems, as they occur when many road users must be considered. The third challenge is caused by the interaction, i.e., solving the distributed optimization problem on one vehicle while parts of the optimization problems of other road users must be exchanged.
To meet these challenges, we develop novel methods for networked trajectory planning that reduce the computation time and communications requirements while enhancing the feasibility and quality of control.
GROKO-Plan
In the subproject GROKO-Plan (Graph-based, Optimal and Cooperative Trajectory Planning for Interacting Automobiles), we research trajectory planning methods for networked vehicles using graph-based methods with our project partner of the Saarland University. Networked planning is characterized by a receding horizon approach in discrete planning space. Maneuver automata model the dynamics and couplings of agents. We use graph search algorithms and hybrid optimization to find trajectories in the coupled automata. We focus on developing novel methods for distributed computations in order to reduce the complexity of the planning problem.
Contact: Patrick Scheffe, M.Sc. RWTH
AutoKnigge
In the subproject
AutoKnigge (Modeling, Evaluation, and Verification of Cooperative Interacting Automobiles), we research trajectory planning methods for networked vehicles and methods for safety-verification of the vehicles' motion with our project partners of the Institute for Automotive Engineering (ika) and the Chair of Computer Science 3 - Software Engineering (i3). We plan trajectories using Networked Model Predictive Control (Net-MPC). The planning algorithms use a receding horizon approach in a continuous planning space. The cost function and constraints of the planning problem model the coupling of agents. We research novel methods for distributed MPC for reducing the complexity of the planning problem. We verify the resulting trajectories using formal methods.
Contact: Maximilian Kloock, M.Sc. RWTH
The Chair of Computer Science 11 is part of the new Collaborative Research Center / Transregio (SFB/TRR) 339 of the German Research Foundation (DFG). The Collaborative Research Project investigates the „Road of the Future“ and is named: »Digital Twin of the Road System - Physical-Informational Representation of Future Road System«.
Research groups from TU Dresden and RWTH Aachen University are researching in collaboration of civil engineering, computer science, and mechanical engineering. The goal of the research area is the creation and exploration of a digital twin of the road system, thus laying the foundation for the analysis and optimization of the future road system. The main focus of this research is the intelligent, gentle, and sustainable use of road infrastructure.
Our task as the Chair of Embedded Software is primarily a sensor data fusion that combines data from different sources. We mainly focus on the inclusion of data from a sensitive road surface layer.
More Information about the project: Project Website
Copyright SFB/TRR 339
Contact: Simon Schäfer, M.Sc. RWTH
Two German universities and two industrial companies interdisciplinary collaborate in the HarMobi (Harmonizing Mobility) project. HarMobi aims at researching a new basis for evaluating conflicts between different road users. We will use sensor and traffic flow data from bicycles, e-scooters, and cars to determine the behavior of road users and the influence of the road infrastructure. This novel data will be fed into a learning system to better assess safety impacts for future traffic developments and planning.
The predecessor project GefahrstelleRAD investigated the identification of cycling-specific danger spots in public roads for maps and navigation applications, see Gefahrenstellen.
In HarMobi, our group will design the algorithms for data acquisition, critical situation assessment, and map matching. Additionally, we will research conflict causes and create a prognosis model.
More Information about the project: HarMobi
Contact: Simon Schäfer, M.Sc. RWTH
Global Navigation Satellite Systems (GNSS), such as GPS or Galileo, can suffer from performance degradation in urban areas, caused by non-line-of-sight or multipath propagation. Therefore, autonomous vehicles additionally use localization algorithms based on heuristic features extracted from sensor data to alleviate the aforementioned problems. While these algorithms tend to perform better in urban areas than GNSS, these approaches have their drawbacks. Even state-of-the-art approaches suffer from issues with long-term stability, scarcity, or ambiguity of the features. This project pursues the development of a low-cost localization system that is aided by infrastructure-based features to overcome the problems of both approaches.
Contact: Alexandru Kampmann, M.Sc. RWTH
Germany's leading universities in the field of automated vehicles have joined forces with selected specialists from industry in the BMBF-funded project UNICARagil to rethink automated vehicles and their architectures. UNICARagil researches disruptive, modular, and agile concepts in hardware and software architecture for fully automated and driverless vehicles.
The modular vehicle concept consists of a driving platform and add-on modules, which build the basis for the UNICARagil-vehicles. The UNICARagil-vehicles can be flexibly adapted to a wide range of applications in passenger transport or logistics.
The RWTH Aachen University is involved in the project with the Institute of Automotive Engineering (ika), the Institute and Chair of Flight System Dynamics (FSD), and the Chair of Computer Science 11 - Embedded Software (i11). The i11 is mainly responsible for the conceptualization and implementation of a service-oriented software architecture, as well as an architecture of cloud-based services.
Dr.-Ing. Bassam Alrifaee is responsible for the coordination of the digital architecture. Alexandru Kampmann, M.Sc. RWTH and Armin Mokhtarian, M.Sc. RWTH are responsible for the conceptualization and implementation of the service-oriented software architecture and the architecture of cloud-based services.
One outcome of this project is embeddedRTPS, a portable DDS implementation for embedded systems that is based on FreeRTOS and lightweightIP. It is available under the MIT license on Github.
Read more on the service-oriented software architecture.
Read more on the architecture of cloud-based services.
Contact: Alexandru Kampmann, M.Sc. RWTH, Armin Mokhtarian, M.Sc. RWTH
The Chair of Computer Science 11 - Embedded Software (i11) collaborates with the Institute of Automatic Control (IRT, Faculty of Mechanical Engineering) on the new project Service-Oriented Model-based Control (SOMC) funded by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG). By tightly coupling software engineering and control theory, a service-oriented architecture (SOA) should improve the flexibility and maintainability of control systems. This architecture enables the control system to adapt to situations not foreseen at design time by exchanging control components dynamically at runtime.
The i11 explores an SOA fit for the requirements of real-time, embedded control systems while enabling the necessary flexibility. The IRT develops the required models and investigates stability conditions for switching between control components.
The proposal was submitted by Dr.-Ing. Bassam Alrifaee (head of the Cyber-Physical Mobility Group at i11) and Dr.-Ing. Lorenz Dörschel (IRT). The research associates Ole Greß, M. Sc. (i11) and Markus Zimmer, M. Sc. (IRT) are working on the project.
More information about the Institute of Automatic Control
More Information about the project
Contact: Ole-Christian Greß, M.Sc. RWTH
Leading German universities in the automotive sector and selected researchers from industry jointly research in the AUTOtech.agil project. The goal of AUTOtech.agil is to create an open architecture for the mobility system of the future. A particular focus is on the standardization of interfaces, updatability, and expandability of functional building blocks. Future mobility is electric, networked, and automated. This will lead to a comprehensive transformation of road traffic as we know it today. This is accompanied not only by great opportunities for novel mobility and transportation concepts but also by improvements in road safety and quality of life. This transformation requires agile approaches based on innovative software and hardware architectures that also enable machine learning methods.
In the predecessor project UNICARagil, our Chair was primarily responsible for the design and implementation of the digital architecture. Our chair was in charge of developing the Automotive Service-Oriented Software Architecture (ASOA) and coordinated the realization of the UNICARagil cloud infrastructure.
In AUTOtech.agil, our tasks are
More Information about the project
Contact: Julius Beerwerth, M.Sc. RWTH, Alexandru Kampmann, M.Sc. RWTH
The Cyber-Physical Mobility Lab (CPM Lab) is an open source, remotely accessible platform for rapid algorithm prototyping for networked and autonomous vehicles. Its unique hierarchical service-oriented architecture enables synchronized computations of different complexity levels. The CPM Lab is our group-wide project that makes our research results tangible, both for the scientific staff and for students. Our vision in developing the CPM Lab is to See your Ideas Turning into Reality!
For more details on the CPM Lab, visit our website cpm.embedded.rwth-aachen.de.
We thank the following programs for providing funds to the CPM Lab
Contact: All Cyber-Physical Mobility group members: cpm-info[at]embedded[dot]rwth-aachen[dot]de
We offer the course Control and Perception in Networked and Autonomous Vehicles since the winter term 2019/2020. We designed it for master's students of computer science, automation engineering, and computational engineering science. It combines theory with practical exercises in the CPM Lab. The course materials are available here.
Contact: Patrick Scheffe, M.Sc. RWTH, Simon Schäfer, M.Sc. RWTH
For bachelor's students, we offer a practical course software project in the CPM Lab since the winter term 2019/2020.
Contact: Armin Mokhtarian, M.Sc. RWTH
Since 2008, our student group Team GalaXIs implements perception and control algorithms on an autonomous model-scale vehicle in order to participate in the Carolo-Cup competition.
More information can be found at galaxis.rwth-aachen.de.
We are always looking for motivated and ambitious students to join Team GalaXIs.
Contact: Alexandru Kampmann, M.Sc. RWTH, Ole-Christian Greß, M.Sc. RWTH
Prepare your application as a single PDF, not bigger than 5MB. Please include
Please send your application via e-mail with this subject line: Application CPM - Master Thesis/Bachelor Thesis/Student Assistant/PhD Position
Please note that it can take up to two weeks for us to reply to applications.
Current open PhD positions can be found here. Additionally, initiative applications for PhD positions are very welcome, please contact Dr.-Ing. Bassam Alrifaee.
We are always looking for motivated and ambitious students to join our team. We offer theses and student assistant positions in the following areas
Additionally, initiative applications for theses and student assistant positions are very welcome. You can send your application to the corresponding member of the group, or all members: cpm-info[at]embedded[dot]rwth-aachen.de
Our group contributes to different national and international committees, e.g., to
We also contribute to the organization of meetings and conferences in our research area, e.g., by organizing special sessions.
@article { KA23, author = { Kloock, Maximilian Martin and Alrifaee, Bassam }, title = { Coordinated Cooperative Distributed Decision-Making Using Synchronization of Local Plans }, journal = { IEEE Transactions on Intelligent Vehicles }, publisher = { IEEE }, pages = { 1-15 }, year = { 2023 }, address = { New York, NY }, issn = { 2379-8858 }, doi = { 10.1109/TIV.2023.3234189 }, typ = { PUB:(DE-HGF)16 }, reportid = { RWTH-2023-00601 }, cin = { 122810 / 120000 }, url = { http://publications.rwth-aachen.de/record/862885 }, }
@article { KSG+23, author = { Kloock, Maximilian Martin and Scheffe, Patrick and Gress, Ole and Alrifaee, Bassam }, title = { An Architecture for Experiments in Connected and Automated Vehicles }, journal = { IEEE open journal of intelligent transportation systems }, publisher = { IEEE }, pages = { 1-13 }, year = { 2023 }, address = { [New York, NY] }, issn = { 2687-7813 }, doi = { 10.1109/OJITS.2023.3250951 }, typ = { PUB:(DE-HGF)16 }, reportid = { RWTH-2023-02350 }, cin = { 122810 / 120000 }, url = { http://publications.rwth-aachen.de/record/952957/files/952957.pdf }, }
@article { SHK+23, author = { Scheffe, Patrick and Henneken, Theodor Mario and Kloock, Maximilian Martin and Alrifaee, Bassam }, title = { Sequential Convex Programming Methods for Real-time Optimal Trajectory Planning in Autonomous Vehicle Racing }, journal = { IEEE Transactions on Intelligent Vehicles : T-IV }, publisher = { IEEE }, pages = { 661-672 }, volume = { 8 }, number = { 1 }, year = { 2023 }, address = { New York, NY }, issn = { 2379-8858 }, doi = { 10.1109/TIV.2022.3168130 }, typ = { PUB:(DE-HGF)16 }, reportid = { RWTH-2022-10294 }, cin = { 122810 / 120000 }, url = { http://publications.rwth-aachen.de/record/855596 }, }
@inproceedings { KDK+22, author = { Kloock, Maximilian Martin and Dirksen, Matthis and Kowalewski, Stefan and Alrifaee, Bassam }, title = { Generation of Coupling Topologies for Multi-Agent Systems using Non-Cooperative Games }, booktitle = { 2022 IEEE Intelligent Vehicles Symposium (IV) : 4-9 June 2022 / publisher: IEEE }, publisher = { IEEE }, pages = { 1-8 }, year = { 2022 }, address = { Piscataway, NJ }, organization = { 33. IEEE Intelligent Vehicles Symposium, Aachen (Germany), 2022-06-04 - 2022-06-09 }, doi = { 10.1109/IV51971.2022.9827431 }, typ = { PUB:(DE-HGF)7 }, reportid = { RWTH-2022-07956 }, cin = { 122810 / 120000 }, url = { http://publications.rwth-aachen.de/record/852149/files/852149.pdf }, }
@inproceedings { KLK+22, author = { Kampmann, Alexandru and L{\"u}er, Maximilian and Kowalewski, Stefan and Alrifaee, Bassam }, title = { Optimization-based Resource Allocation for an Automotive Service-oriented Software Architecture }, booktitle = { 2022 IEEE Intelligent Vehicles Symposium (IV) : 4-9 June 2022 / publisher: IEEE }, publisher = { IEEE }, pages = { 678-687 }, year = { 2022 }, address = { Piscataway, NJ }, organization = { 33. IEEE Intelligent Vehicles Symposium, Aachen (Germany), 2022-06-04 - 2022-06-09 }, doi = { 10.1109/IV51971.2022.9827429 }, typ = { PUB:(DE-HGF)7 }, reportid = { RWTH-2022-08619 }, cin = { 122810 / 120000 }, url = { http://publications.rwth-aachen.de/record/853127/files/853127.pdf }, }
@inproceedings { KLP+22, author = { Kampmann, Alexandru and Lamberti, Michael and Petrovic, Nikola and Kowalewski, Stefan and Alrifaee, Bassam }, title = { Investigating Outdoor Recognition Performance of Infrared Beacons for Infrastructure-based Localization }, booktitle = { 2022 IEEE Intelligent Vehicles Symposium (IV) : 4-9 June 2022 / publisher: IEEE }, publisher = { IEEE }, pages = { 1107-1113 }, year = { 2022 }, address = { Piscataway, NJ }, organization = { 33. IEEE Intelligent Vehicles Symposium, Aachen (Germany), 2022-06-04 - 2022-06-09 }, doi = { 10.1109/IV51971.2022.9827288 }, typ = { PUB:(DE-HGF)7 }, reportid = { RWTH-2022-08618 }, cin = { 122810 / 120000 }, url = { http://publications.rwth-aachen.de/record/853126/files/853126.pdf }, }
@inproceedings { KMK+22, author = { Kampmann, Alexandru and Mokhtarian, Armin and Kowalewski, Stefan and Alrifaee, Bassam }, title = { ASOA - A Dynamic Software Architecture for Software-defined Vehicles }, booktitle = { [31st Aachen Colloquium Sustainable Mobility 2022] }, year = { 2022 }, organization = { 31. Aachen Colloquium Sustainable Mobility 2022 }, typ = { PUB:(DE-HGF)8 }, reportid = { RWTH-2022-11158 }, cin = { 122810 / 120000 }, url = { http://publications.rwth-aachen.de/record/856836/files/856836.pdf }, }
@inproceedings { MA22, author = { Mokhtarian, Armin and Alrifaee, Bassam }, title = { CPM Remote: A Remote Access to the CPM Lab }, booktitle = { 8th-2022 International Conference on Control, Decision and Information Technologies (CoDIT\'22) : May 17-20, 2022, Istanbul, Turkey / CoDIT 2022 ; IFAC - International Federation of Automation Control, IEEE, İzmir Ekonomi {\"U}niversitesi, LISIER, IEEE SMC - System, Man, and Cybernetics Society, IEEE Control Systems Society, CNRS GDR - Groupement de recherche, RO - Recherche opérationelle ; honorary chairs: Okyay Kaynak (Bogazici University, Turkey), Mengchu Zhou (New Jersey Institute of Technology, USA) ; publication co-chairs: Mariagrazia Dotoli (Polytechnic University of Bari, Italy), Nicholas Karampetakis (Aristotle University of Thessaloniki, Greece), Kamal Medjaher (École nationale d\'ingénieurs de Tarbes, France) }, publisher = { IEEE }, pages = { 1124-1129 }, year = { 2022 }, address = { [Piscataway, NJ] }, organization = { 8. International Conference on Control, Decision and Information Technologies, Istanbul (Turkey), 2022-05-17 - 2022-05-20 }, doi = { 10.1109/CoDIT55151.2022.9804088 }, typ = { PUB:(DE-HGF)7 }, reportid = { RWTH-2022-08485 }, cin = { 122810 / 120000 }, url = { http://publications.rwth-aachen.de/record/852942/files/852942.pdf }, }
@inproceedings { MSA22, author = { Mokhtarian, Armin and Sch{\"a}fer, Simon and Alrifaee, Bassam }, title = { CPM Olympics: Development of Scenarios for Benchmarking in Networked and Autonomous Driving }, booktitle = { 2022 IEEE Intelligent Vehicles Symposium (IV) : 4-9 June 2022 / publisher: IEEE }, publisher = { IEEE }, pages = { 9-15 }, year = { 2022 }, address = { Piscataway, NJ }, organization = { 33. IEEE Intelligent Vehicles Symposium, Aachen (Germany), 2022-06-04 - 2022-06-09 }, doi = { 10.1109/IV51971.2022.9827299 }, typ = { PUB:(DE-HGF)7 }, reportid = { RWTH-2022-08486 }, cin = { 122810 / 120000 }, url = { http://publications.rwth-aachen.de/record/852943/files/852943.pdf }, }
@article { MSK+22, author = { Mokhtarian, Armin and Scheffe, Patrick and Kowalewski, Stefan and Alrifaee, Bassam }, title = { Remote Teaching with the Cyber-Physical Mobility Lab }, journal = { IFAC-PapersOnLine }, publisher = { Elsevier }, pages = { 386-391 }, volume = { 55 }, number = { 17 }, year = { 2022 }, address = { Frankfurt ; M{\"u}nchen [u.a.] }, issn = { 1474-6670 }, organization = { 13.IFAC Symposium on Advances in Control Education, Hamburg (Germany), 2022-07-24 - 2022-07-27 }, doi = { 10.1016/j.ifacol.2022.09.310 }, typ = { PUB:(DE-HGF)16 }, reportid = { RWTH-2022-10406 }, cin = { 122810 / 120000 }, url = { http://publications.rwth-aachen.de/record/855749/files/855749.pdf }, }
@inproceedings { SDA22, author = { Scheffe, Patrick and Dorndorf, Georg and Alrifaee, Bassam }, title = { Increasing Feasibility with Dynamic Priority Assignment in Distributed Trajectory Planning for Road Vehicles }, booktitle = { 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC) : 8-12 Oct. 2022 }, publisher = { IEEE }, pages = { 3873-3879 }, year = { 2022 }, address = { Piscataway, NJ }, organization = { 25. International Conference on Intelligent Transportation Systems, Macau (Macau), 2022-10-08 - 2022-10-12 }, doi = { 10.1109/ITSC55140.2022.9922028 }, typ = { PUB:(DE-HGF)7 }, reportid = { RWTH-2022-10176 }, cin = { 122810 / 120000 }, url = { http://publications.rwth-aachen.de/record/855355 }, }
@article { SPF+22, author = { Scheffe, Patrick and Pedrosa, Matheus V. A. and Fla{\ss}kamp, Kathrin and Alrifaee, Bassam }, title = { Receding Horizon Control Using Graph Search for Multi-Agent Trajectory Planning }, journal = { IEEE Transactions on Control Systems Technology }, publisher = { IEEE }, pages = { 1-14 }, year = { 2022 }, address = { New York, NY }, issn = { 1063-6536 }, doi = { 10.1109/TCST.2022.3214718 }, typ = { PUB:(DE-HGF)16 }, reportid = { RWTH-2022-10295 }, cin = { 122810 / 120000 }, url = { http://publications.rwth-aachen.de/record/855597 }, }
@inproceedings { JSG+21, author = { Jatzkowski, Inga and Stolte, Torben and Graubohm, Robert and Maurer, Markus and Kampmann, Alexandru and Alrifaee, Bassam and Kowalewski, Stefan and Buchholz, Michael and Dietmayer, Klaus }, title = { Integration of a Vehicle Operating Mode Management into UNICARagil’s Automotive Service-oriented Software Architecture }, booktitle = { 30. Aachen Colloquium Sustainable Mobility : October 4th-6th, 2021 / scientific management: Univ.-Prof. Dr.-Ing. Lutz Eckstein, Univ.-Prof. Dr.-Ing. Stefan Pischinger ; organizational management: Michaela Wacker (M. Sc.), Jonas M{\"u}ller (M. Sc.) ; organized by: Institute for Automotive Engineering (RWTH Aachen University), Institute for Combustion Engines (RWTH Aachen University) }, publisher = { Institute for Automotive Engineering, RWTH Aachen University }, pages = { 595-614 }, year = { 2021 }, address = { Aachen }, organization = { 30. Aachen Colloquium Sustainable Mobility, Aachen (Germany), 2021-10-04 - 2021-10-06 }, doi = { 10.24355/DBBS.084-202110271613-0 }, typ = { PUB:(DE-HGF)7 }, reportid = { RWTH-2022-01307 }, cin = { 122810 / 120000 }, url = { http://publications.rwth-aachen.de/record/840892/files/840892.pdf }, }
@inproceedings { KHK+21, author = { Kloock, Maximilian Martin and He, Qingyun and Kowalewski, Stefan and Alrifaee, Bassam }, title = { Trajectory Verification for Networked and Autonomous Vehicles using Temporal Logic and Model Checking }, booktitle = { 2021 IEEE International Intelligent Transportation Systems Conference (ITSC) : 19-22 Sept. 2021 / publisher: IEEE }, publisher = { IEEE }, pages = { 244-250 }, year = { 2021 }, address = { [Piscataway, NJ] }, organization = { 24. International Intelligent Transportation Systems Conference, Indianapolis, IN (USA), 2021-09-19 - 2021-09-22 }, doi = { 10.1109/ITSC48978.2021.9564414 }, typ = { PUB:(DE-HGF)7 }, reportid = { RWTH-2021-10124 }, cin = { 122810 / 120000 }, url = { http://publications.rwth-aachen.de/record/834750/files/834750.pdf }, }
@inproceedings { KSM+21, author = { Kloock, Maximilian Martin and Scheffe, Patrick and Maczijewski, Janis and Kampmann, Alexandru and Mokhtarian, Armin and Kowalewski, Stefan and Alrifaee, Bassam }, title = { Cyber-Physical Mobility Lab : An Open-Source Platform for Networked and Autonomous Vehicles }, booktitle = { 2021 European Control Conference (ECC) }, publisher = { IEEE }, pages = { 1937-1944 }, year = { 2021 }, address = { [Piscataway, NJ] }, organization = { 2021 European Control Conference, online, 2021-06-29 - 2021-07-02 }, doi = { 10.23919/ECC54610.2021.9654986 }, typ = { PUB:(DE-HGF)7 }, reportid = { RWTH-2022-00305 }, cin = { 122810 / 120000 }, url = { http://publications.rwth-aachen.de/record/838069 }, }
@article { MKL+21, author = { Mokhtarian, Armin and Kampmann, Alexandru and L{\"u}er, Maximilian and Kowalewski, Stefan and Alrifaee, Bassam }, title = { A Cloud Architecture for Networked and Autonomous Vehicles }, journal = { IFAC-PapersOnLine }, publisher = { Elsevier }, pages = { 233-239 }, volume = { 54 }, number = { 2 }, year = { 2021 }, address = { Frankfurt }, issn = { 2405-8963 }, organization = { 16. IFAC Symposium on Control in Transportation Systems, online, 2021-06-08 - 2021-06-10 }, doi = { 10.1016/j.ifacol.2021.06.028 }, typ = { PUB:(DE-HGF)16 }, reportid = { RWTH-2021-09294 }, cin = { 122810 / 120000 }, url = { http://publications.rwth-aachen.de/record/828696/files/828696.pdf }, }
@article { KMR+20, author = { Kampmann, Alexandru and Mokhtarian, Armin and Rogalski, Jan and Kowalewski, Stefan and Alrifaee, Bassam }, title = { Agile Latency Estimation for a Real-time Service-oriented Software Architecture }, journal = { IFAC-PapersOnLine }, publisher = { Elsevier }, pages = { 5795-5800 }, volume = { 53 }, number = { 2 }, year = { 2020 }, address = { Frankfurt ; M{\"u}nchen [u.a.] }, issn = { 2405-8963 }, organization = { 21. IFAC World Congress on Automatic Control - Meeting Societal Challenges, Berlin (Germany), 2020-07-11 - 2020-07-17 }, doi = { 10.1016/j.ifacol.2020.12.1619 }, typ = { PUB:(DE-HGF)16 }, reportid = { RWTH-2021-06497 }, cin = { 122810 / 120000 }, url = { http://publications.rwth-aachen.de/record/822016/files/822016.pdf }, }
@article { KST+20, author = { Kloock, Maximilian Martin and Scheffe, Patrick and T{\"u}lleners, Isabelle and Maczijewski, Janis and Kowalewski, Stefan and Alrifaee, Bassam }, title = { Vision-Based Real-Time Indoor Positioning System for Multiple Vehicles }, journal = { IFAC-PapersOnLine }, publisher = { Elsevier }, pages = { 15446-15453 }, volume = { 53 }, number = { 2 }, year = { 2020 }, address = { Frankfurt }, issn = { 2405-8963 }, organization = { 21. IFAC World Congress, online, 2020-07-11 - 2020-07-17 }, doi = { 10.1016/j.ifacol.2020.12.2367 }, typ = { PUB:(DE-HGF)16 }, reportid = { RWTH-2021-03830 }, cin = { 122810 / 120000 }, url = { http://publications.rwth-aachen.de/record/817298/files/817298.pdf }, }
@inproceedings { LvW+20, author = { Lampe, Bastian and van Kempen, Raphael and Woopen, Timo and Kampmann, Alexandru and Alrifaee, Bassam and Eckstein, Lutz }, title = { Reducing Uncertainty by Fusing Dynamic Occupancy Grid Maps in a Cloud-based Collective Environment Model }, booktitle = { 2020 IEEE Intelligent Vehicles Symposium (IV) / publisher: IEEE }, publisher = { IEEE }, pages = { 837-843 }, year = { 2020 }, address = { Piscataway, NJ }, organization = { 31. IEEE Intelligent Vehicles Symposium, online, 2020-10-19 - 2020-11-13 }, doi = { 10.1109/IV47402.2020.9304816 }, typ = { PUB:(DE-HGF)7 }, reportid = { RWTH-2021-02777 }, cin = { 414110 / 122810 / 120000 }, url = { http://publications.rwth-aachen.de/record/815706 }, }
@article { LvW+20a, author = { Lampe, Bastian and van Kempen, Raphael and Woopen, Timo and Kampmann, Alexandru and Alrifaee, Bassam and Eckstein, Lutz }, title = { Reducing Uncertainty by Fusing Dynamic Occupancy Grid Maps in a Cloud-based Collective Environment Model }, pages = { 7 Seiten }, year = { 2020 }, typ = { PUB:(DE-HGF)25 }, reportid = { RWTH-2021-04037 }, cin = { 414110 / 122810 / 120000 }, url = { http://publications.rwth-aachen.de/record/817686/files/817686.pdf }, }
@inproceedings { MKA+20, author = { Mokhtarian, Armin and Kampmann, Alexandru and Alrifaee, Bassam and Kowalewski, Stefan and Lampe, Bastian and Eckstein, Lutz }, title = { Agile Requirement Engineering for a Cloud System for Automated and Networked Vehicles }, booktitle = { 2nd International Workshop on Autonomous Systems Design : ASD 2020, March 13, 2020, Grenoble, France, converted to a virtual event due to COVID-19, held in April 2020 / edited by Sebastian Steinhorst, Jyotirmoy V. Deshmukh }, publisher = { Schloss Dagstuhl - Leibniz-Zentrum f{\"u}r Informatik GmbH, Dagstuhl Publishing, August }, pages = { 4:1-4:8 }, series = { OpenAccess Series in Informatics }, year = { 2020 }, address = { Saarbr{\"u}cken/Wadern, Germany }, organization = { 2. International Workshop on Autonomous Systems Design, Grenoble (France), 2020-03-12 - 2020-03-13 }, doi = { 10.4230/OASIcs.ASD.2020.4 }, typ = { PUB:(DE-HGF)7 }, reportid = { RWTH-2020-08417 }, cin = { 122810 / 120000 / 414110 }, }
@inproceedings { MKA+20a, author = { Mokhtarian, Armin and Kampmann, Alexandru and Alrifaee, Bassam and Kowalewski, Stefan }, title = { The Dynamic Service-oriented Software Architecture for the UNICARagil Project }, booktitle = { 29. Aachen Colloquium Sustainable Mobility : October 5th-7th, 2020, digital event / scientific management: Univ.-Prof. Dr.-Ing. Lutz Eckstein, Univ.-Prof. Dr.-Ing. Stefan Pischinger ; organizational management: Michaela Wacker (M. Sc.), Jonas M{\"u}ller (M. Sc.) ; organized by: Institute for Automotive Engineering, RWTH Aachen University; Institute for Combustion Engines, RWTH Aachen University. - 1: October 6th, 2020 }, publisher = { Institute for Automotive Engineering, RWTH Aachen University ; Aachen : Institute for Combustion Engines, RWTH Aachen University }, pages = { 275-284 }, year = { 2020 }, address = { Aachen }, organization = { 29. Aachen Colloquium Sustainable Mobility = 29. Aachener Kolloquium Fahrzeug- und Motorentechnik, Aachen (Germany), 2020-10-05 - 2020-10-07 }, doi = { 10.18154/RWTH-2020-11256 }, typ = { PUB:(DE-HGF)7 }, reportid = { RWTH-2020-11256 }, cin = { 122810 / 120000 }, url = { http://publications.rwth-aachen.de/record/807282/files/807282.pdf }, }
@article { SMK+20, author = { Scheffe, Patrick and Maczijewski, Janis and Kloock, Maximilian Martin and Kampmann, Alexandru and Derks, Andreas and Kowalewski, Stefan and Alrifaee, Bassam }, title = { Networked and Autonomous Model-scale Vehicles for Experiments in Research and Education }, journal = { IFAC-PapersOnLine }, publisher = { Elsevier }, pages = { 17332-17337 }, volume = { 53 }, number = { 2 }, year = { 2020 }, address = { Frankfurt }, issn = { 2405-8963 }, organization = { 21. IFAC World Congress, online, 2020-07-11 - 2020-07-17 }, doi = { 10.1016/j.ifacol.2020.12.1821 }, typ = { PUB:(DE-HGF)16 }, reportid = { RWTH-2021-03987 }, cin = { 122810 / 120000 }, url = { http://publications.rwth-aachen.de/record/817552/files/817552.pdf }, }
@inproceedings { KAK+19, author = { Kampmann, Alexandru and Alrifaee, Bassam and Kohout, Markus and W{\"u}stenberg, Andreas and Woopen, Timo and Nolte, Marcus and Eckstein, Lutz and Kowalewski, Stefan }, title = { A Dynamic Service-Oriented Software Architecture for Highly Automated Vehicles }, booktitle = { The 2019 IEEE Intelligent Transportation Systems Conference - ITSC : Auckland, New Zealand, 27-30 October 2019 / IEEE, IEEE-ITSC 2019, ITSS - IEEE Intelligent Transportation Systems Society }, publisher = { IEEE }, pages = { 2101-2108 }, year = { 2019 }, address = { Piscataway, NJ }, organization = { 22. IEEE Intelligent Transportation Systems Conference, Auckland (New Zealand), 2019-10-27 - 2019-10-30 }, doi = { 10.1109/ITSC.2019.8916841 }, typ = { PUB:(DE-HGF)7 }, reportid = { RWTH-2019-11214 }, cin = { 122810 / 414110 / 120000 }, url = { http://publications.rwth-aachen.de/record/773699 }, }
@inproceedings { KKM+19, author = { Kloock, Maximilian Martin and Kragl, Ludwig and Maczijewski, Janis and Alrifaee, Bassam and Kowalewski, Stefan }, title = { Distributed Model Predictive Pose Control of Multiple Nonholonomic Vehicles }, booktitle = { IV19 : 30th IEEE Intelligent Vehicles Symposium : 9-12 June 2019, Paris / publisher: IEEE }, publisher = { IEEE }, pages = { 1620-1625 }, year = { 2019 }, address = { Piscataway, NJ }, organization = { 30. IEEE Intelligent Vehicles Symposium, Paris (France), 2019-06-09 - 2019-06-12 }, doi = { 10.1109/IVS.2019.8813980 }, typ = { PUB:(DE-HGF)7 }, reportid = { RWTH-2019-08197 }, cin = { 122810 / 120000 }, url = { http://publications.rwth-aachen.de/record/766610 }, }
@inproceedings { KNR+19, author = { Keilhoff, Dan and Niedballa, Dennis and Reuss, Hans-Christian and Buchholz, Michael and Gies, Fabian and Dietmayer, Klaus and Lauer, Martin and Stiller, Christoph and Ackermann, Stefan and Winner, Hermann and Kampmann, Alexandru and Alrifaee, Bassam and Kowalewski, Stefan and Klein, Fabian and Struth, Michael Manfred and Woopen, Timo and Eckstein, Lutz }, title = { UNICARagil - New architectures for disruptive vehicle concepts }, booktitle = { 19. Internationales Stuttgarter Symposium : Automobil- und Motorentechnik / Michael Bargende, Hans-Christian Reuss, Andreas Wagner, Jochen Wiedemann (Hrsg.) }, publisher = { Springer Vieweg }, pages = { 830-842 }, series = { Proceedings }, year = { 2019 }, address = { Wiesbaden ; [Heidelberg] }, organization = { 19. Internationales Stuttgarter Symposium Automobil- und Motorentechnik = 19th Stuttgart International Symposium Automotive and Engine Technology, Stuttgart (Germany), 2019-03-19 - 2019-03-20 }, doi = { 10.1007/978-3-658-25939-6_65 }, typ = { PUB:(DE-HGF)7 }, reportid = { RWTH-2019-09748 }, cin = { 122810 / 120000 / 414110 }, url = { http://publications.rwth-aachen.de/record/770823 }, }
@inproceedings { KSB+19, author = { Kloock, Maximilian Martin and Scheffe, Patrick and Botz, Lukas and Maczijewski, Janis and Alrifaee, Bassam and Kowalewski, Stefan }, title = { Networked Model Predictive Vehicle Race Control }, booktitle = { The 2019 IEEE Intelligent Transportation Systems Conference - ITSC : Auckland, New Zealand, 27-30 October 2019 / IEEE, IEEE-ITSC 2019, ITSS - IEEE Intelligent Transportation Systems Society }, publisher = { IEEE }, pages = { 1552-1557 }, year = { 2019 }, address = { Piscataway, NJ }, organization = { 22. IEEE Intelligent Transportation Systems Conference, Auckland (New Zealand), 2019-10-27 - 2019-10-30 }, doi = { 10.1109/ITSC.2019.8917222 }, typ = { PUB:(DE-HGF)7 }, reportid = { RWTH-2019-11241 }, cin = { 122810 / 120000 }, url = { http://publications.rwth-aachen.de/record/773727 }, }
@inproceedings { KSM+19, author = { Kloock, Maximilian Martin and Scheffe, Patrick and Marquardt, Sascha and Maczijewski, Janis and Alrifaee, Bassam and Kowalewski, Stefan }, title = { Distributed Model Predictive Intersection Control of Multiple Vehicles }, booktitle = { The 2019 IEEE Intelligent Transportation Systems Conference - ITSC : Auckland, New Zealand, 27-30 October 2019 / IEEE, IEEE-ITSC 2019, ITSS - IEEE Intelligent Transportation Systems Society }, publisher = { IEEE }, pages = { 8917117, 1735-1740 }, year = { 2019 }, address = { Piscataway, NJ }, organization = { 22. IEEE Intelligent Transportation Systems Conference, Auckland (New Zealand), 2019-10-27 - 2019-10-30 }, doi = { 10.1109/ITSC.2019.8917117 }, typ = { PUB:(DE-HGF)7 }, reportid = { RWTH-2019-11242 }, cin = { 122810 / 120000 }, url = { http://publications.rwth-aachen.de/record/773728 }, }
@inproceedings { KWA+19, author = { Kampmann, Alexandru and W{\"u}stenberg, Andreas and Alrifaee, Bassam and Kowalewski, Stefan }, title = { A Portable Implementation of the Real-Time Publish-Subscribe Protocol for Microcontrollers in Distributed Robotic Applications }, booktitle = { The 2019 IEEE Intelligent Transportation Systems Conference - ITSC : Auckland, New Zealand, 27-30 October 2019 / IEEE, IEEE-ITSC 2019, ITSS - IEEE Intelligent Transportation Systems Society }, publisher = { IEEE }, pages = { 443-448 }, year = { 2019 }, address = { Piscataway, NJ }, organization = { 22. IEEE Intelligent Transportation Systems Conference, Auckland (New Zealand), 2019-10-27 - 2019-10-30 }, doi = { 10.1109/ITSC.2019.8916835 }, typ = { PUB:(DE-HGF)7 }, reportid = { RWTH-2019-11216 }, cin = { 122810 / 120000 }, url = { http://publications.rwth-aachen.de/record/773701 }, }
@article { VKR+19, author = { V{\"o}lker, Marcus and Kloock, Maximilian Martin and Rabanus, Leon and Alrifaee, Bassam and Kowalewski, Stefan }, title = { Verification of Cooperative Vehicle Behavior using Temporal Logic }, journal = { IFAC-PapersOnLine }, publisher = { Elsevier }, pages = { 99-104 }, volume = { 52 }, number = { 8 }, year = { 2019 }, address = { Frankfurt ; M{\"u}nchen [u.a.] }, issn = { 2405-8963 }, organization = { 10. IFAC Symposium on Intelligent Autonomous Vehicles, Gdansk (Poland), 2019-07-03 - 2019-07-05 }, doi = { 10.1016/j.ifacol.2019.08.055 }, typ = { PUB:(DE-HGF)16 }, reportid = { RWTH-2019-08318 }, cin = { 122810 / 120000 }, url = { http://publications.rwth-aachen.de/record/766778 }, }
@inproceedings { AM18, author = { Alrifaee, Bassam and Maczijewski, Janis }, title = { Real-time Trajectory optimization for Autonomous Vehicle Racing using Sequential Linearization }, booktitle = { 2018 IEEE Intelligent Vehicles Symposium (IV) : 26-30 June 2018 / [sponsored by the IEEE Intelligent Transportation Systems Society (ITSS)] }, publisher = { IEEE }, year = { 2018 }, address = { Piscataway, NJ }, organization = { 29. IEEE Intelligent Vehicles Symposium, Changshu (Peoples R China), 2018-06-26 - 2018-06-30 }, doi = { 10.1109/IVS.2018.8500634 }, typ = { PUB:(DE-HGF)7 }, reportid = { RWTH-2018-229489 }, cin = { 122810 / 120000 }, url = { http://publications.rwth-aachen.de/record/748563 }, }
@article { GSA+18, author = { Grochowski, Marco and Schweigler, Martin and Alrifaee, Bassam and Kowalewski, Stefan }, title = { A GPS-aided Inertial Navigation System for Vehicular Navigation using a Smartphone }, journal = { IFAC-PapersOnLine }, pages = { 121-126 }, volume = { 51 }, number = { 10 }, year = { 2018 }, address = { Laxenburg }, issn = { 2405-8963 }, organization = { 3. IFAC Conference on Embedded Systems, Computational Intelligence and Telematics in Control, Farod (Portugal), 2018-06-06 - 2018-06-08 }, doi = { 10.1016/j.ifacol.2018.06.247 }, typ = { PUB:(DE-HGF)16 }, reportid = { RWTH-2018-227583 }, cin = { 122810 / 120000 }, url = { http://publications.rwth-aachen.de/record/731577 }, }
@inproceedings { WLB+18, author = { Woopen, Timo and Lampe, Bastian and B{\"o}ddeker, Torben and Eckstein, Lutz and Kampmann, Alexandru and Alrifaee, Bassam and Kowalewski, Stefan and Moormann, Dieter and Stolte, Torben and Jatzkowski, Inga and Maurer, Markus and M{\"o}stl, Mischa and Ernst, Rolf and Ackermann, Stefan and Amersbach, Christian and Winner, Hermann and P{\"u}llen, Dominik and Katzenbeisser, Stefan and Leinen, Stefan and Becker, Matthias and Stiller, Christoph and Furmans, Kai and Bengler, Klaus and Diermeyer, Frank and Lienkamp, Markus and Keilhoff, Dan and Reuss, Hans-Christian and Buchholz, Michael and Dietmayer, Klaus and Lategahn, Henning and Siepenk{\"o}tter, Norbert and Elbs, Martin and v. Hin{\"u}ber, Edgar and Dupuis, Marius and Hecker, Christian }, title = { UNICARagil - Disruptive Modular Architectures for Agile, Automated Vehicle Concepts }, booktitle = { { 27. Aachener Kolloquium Fahrzeug- und Motorentechnik : October 8th - 10th, 2018 - Eurogress Aachen }, germany = { 27. Aachen Colloquium Automobile and Engine Technology } }, publisher = { Aachener Kolloquium Fahrzeug- und Motorentechnik GbR }, pages = { 663-694 }, year = { 2018 }, address = { Aachen, Germany }, organization = { 27. Aachen Colloquium Automobile and Engine Technology 2018 = 27. Aachen Colloquium Automobile and Engine Technology, Aachen (Germany), 2018-10-08 - 2018-10-10 }, doi = { 10.18154/RWTH-2018-229909 }, typ = { PUB:(DE-HGF)7 }, reportid = { RWTH-2018-229909 }, cin = { 414110 / 122810 / 415410 / 120000 }, url = { http://publications.rwth-aachen.de/record/749158/files/749158_Liste%20der%20Partner%20.pdf }, i11key = { DESIREE - Konzeptionierung und Umsetzung des automatisierten AUTOshuttles }, }
@inproceedings { AMA17, author = { Alrifaee, Bassam and Maczijewski, Janis and Abel, Dirk }, title = { Sequential Convex Programming MPC for Dynamic Vehicle Collision Avoidance }, booktitle = { First Annual IEEE Conference on Control Technology and Applications : Kohala Coast, Hawai’i, August 27-30, 2017 : CCTA 2017 / IEEE, CSS, IEEE Robotics & Automation Society, SICE }, publisher = { IEEE }, pages = { 2202-2207 }, year = { 2017 }, address = { Piscataway, NJ }, organization = { 1. Annual IEEE Conference on Control Technology and Applications, Mauna Lani, HI (USA), 2017-08-27 - 2017-08-30 }, doi = { 10.1109/CCTA.2017.8062778 }, typ = { PUB:(DE-HGF)7 }, reportid = { RWTH-2017-09124 }, cin = { 122810 / 416610 / 120000 }, url = { http://publications.rwth-aachen.de/record/707229 }, }
The project eNav aimed at the development of a navigation system for disabled electric wheelchair users. For a selected navigation goal, eNav computes a route that
The system can be transferred to the research of other electric vehicles, e.g., e-bikes. Read more on the project website.
This project pursues the development of a state-of-the-art GNSS/INS, which receives input from a Statistical Absolute Position Estimator (SAPE) for an additional update step. SAPE uses features of the road surface to determine the absolute location of the vehicle. More specifically, Hidden Markov Models (HMM) are used for the classification of inputs from acceleration sensors. The project has been implemented using a Pedelec.
Especially in recent years, the number of bicycles on the road is increasing. In contrast to all other traffic participants, the number of accidents for bicycles is increasing as well. While multiple active safety systems exist for cars, such systems are rare for bicycles and pedelecs. The Bicycle Safety project aimed to develop a low-cost and portable active safety system for bicycles. This system shall warn riders before a potentially dangerous situation occurs. Possible dangerous situations are sharp corners and changing road surfaces.